传送门

题意:

一个人数数,规则如下:

  1. 确定数数的进制B
  2. 确定一个数数的区间[L, R]
  3. 对于[L, R] 间的每一个数,把该数视为一个字符串,列出该字符串的所有连续子串对应的B进制数的值。
  4. 对所有列出的数求和。

结果用10 进制表示,对20130427取模。


思路:

我不知道为什么要从低位开始向高位处理2333333手动毒瘤

然后肝了好久幸好没有推错不然就自闭了

不过需要多预处理一点东西。

假设现在计算[1,a][1,a][1,a]的答案,aaa一个表示BBB进制数的数组

ssi:ss_i:ssi​:所有不含前导000的iii位数的子串之和。

s1i:s_{1i}:s1i​:所有包含前导000的iii位数的子串之和。

s2i:s_{2i}:s2i​:所有包含前导000的iii位数的前缀串之和。

pwi:pw_i:pwi​:BBB的iii次方。

spwi:spw_i:spwi​:pwpwpw的前缀和。

预处理出上面的信息就可以递推了(注意我是从后往前推的所以很复杂):

设现在在第iii位,我们记fff表示iii~nnn满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的子串之和,pfpfpf表示i+1i+1i+1位推出的fff;

ggg表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的个数,pgpgpg表示i+1i+1i+1位推出的ggg;

sss表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的前缀串之和,pspsps表示i+1i+1i+1位推出的sss。

然后就可以分第iii位填000,填111~ai−1a_i-1ai​−1,aia_iai​的情况大力转移了,注意特判ai=0a_i=0ai​=0的情况。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
	static char buf[rlen],*ib,*ob;
	(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
	return ib==ob?-1:*ib++;
}
inline int read(){
	int ans=0;
	char ch=gc();
	while(!isdigit(ch))ch=gc();
	while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
	return ans;
}
typedef long long ll;
const int N=1e5+5,mod=20130427;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline void update(int&a,const int&b){a=a+b>=mod?a+b-mod:a+b;}
int B,n,ans=0,a[N],pw[N],spw[N],s1[N],s2[N],ss[N];
inline int calc(int x){return (ll)(x+1)*x/2%mod;}
inline void init(){
	pw[0]=spw[0]=1;
	for(ri i=1;i<=n;++i)pw[i]=mul(pw[i-1],B),spw[i]=add(pw[i],spw[i-1]);
	s1[0]=s2[0]=ss[0]=0;
	for(ri i=1,tmp=calc(B-1);i<=n;++i)s2[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(s2[i-1],B));
	for(ri i=1,tmp=calc(B-1);i<=n;++i)s1[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(B,add(s2[i-1],s1[i-1])));
	for(ri i=1;i<=n;++i)ss[i]=add(mul(add(s1[i-1],s2[i-1]),B-1),mul(calc(B-1),mul(pw[i-1],spw[i-1]))),update(ss[i],ss[i-1]);
	update(ans,ss[n-1]);
}
inline void solve(){
	n=read();
	for(ri i=1;i<=n;++i)a[i]=read();
	init();
	for(ri tmp,ps=0,pf=0,pg=1,s,f,g,i=n;i;--i,pf=f,pg=g,ps=s){
		if(!a[i]){f=add(pf,ps),g=pg,s=ps;continue;}
		f=s=0,g=1;
		tmp=mul(a[i]-1,add(s1[n-i],s2[n-i]));
		update(tmp,mul(mul(calc(a[i]-1),spw[n-i]),pw[n-i]));
		update(f,tmp);
		if(i==1)update(ans,tmp);
		g=mul(g,mul(pw[n-i],a[i]-1));
		update(s,mul(mul(calc(a[i]-1),pw[n-i]),spw[n-i]));
		update(s,mul(s2[n-i],a[i]-1));
		update(f,add(s1[n-i],s2[n-i]));
		update(g,pw[n-i]);
		update(s,s2[n-i]);
		tmp=mul(mul(a[i],pg),spw[n-i]);
		update(tmp,pf),update(tmp,ps);
		update(f,tmp);
		if(i==1)update(ans,tmp);
		update(g,pg),update(s,mul(mul(pg,a[i]),spw[n-i])),update(s,ps);
	}
}
inline void Solve(){for(ri i=1,sum=0;i<=n;++i)ans=add(ans,sum=add(mul(sum,B),mul(a[i],i)));}
int main(){
	B=read();
	solve();
	ans=mod-ans;
	Solve();
	solve();
	cout<<ans;
	return 0;
}

2019.03.28 bzoj3326: [Scoi2013]数数(数位dp)的更多相关文章

  1. 2019.03.28 bzoj3322: [Scoi2013]摩托车交易(kruskal重构树+贪心)

    传送门 题意咕咕咕 思路: 先把所有可以列车通的缩成一个点,然后用新图建立kruskalkruskalkruskal重构树. 这样就可以倒着贪心模拟了. 代码: #include<bits/st ...

  2. 2019.03.28 bzoj3325: [Scoi2013]密码(manacher+模拟)

    传送门 题意: 现在有一个nnn个小写字母组成的字符串sss. 然后给你nnn个数aia_iai​,aia_iai​表示以sis_isi​为中心的最长回文串串长. 再给你n−1n-1n−1个数bib_ ...

  3. BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP

    BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺 ...

  4. BZOJ_1026_[SCOI2009]windy数_数位DP

    BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...

  5. [bzoj 1026]windy数(数位DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 分析: 简单的数位DP啦 f[i][j]表示数字有i位,最高位的数值为j的windy数总 ...

  6. bzoj 1026 [SCOI2009]windy数(数位DP)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4550  Solved: 2039[Submit][Sta ...

  7. [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】

    题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...

  8. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  9. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

随机推荐

  1. 逆变(contravariant)与协变(covariant):只能用在接口和委托上面

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. Spring Boot与Docker部署

    开启Docker远程访问 首先需要开启docker远程访问功能,以便可以进行远程操作. CentOS 6 修改/etc/default/docker文件,重启后生效(service docker re ...

  3. destructuring

    解构(结构化赋值): 解构过程中,具备赋值和变量声明两个功能 目的在于把等号左右长的相似的两个东西内部的值取出来. 对象数组都可以参与解构: let obj = {name: ‘duyi’,age: ...

  4. 【深入Java虚拟机(1)】:Java内存区域与内存溢出

    原文出处: 兰亭风雨 内存区域 Java虚拟机在执行Java程序的过程中会把他所管理的内存划分为若干个不同的数据区域.Java虚拟机规范将JVM所管理的内存分为以下几个运行时数据区:程序计数器.Jav ...

  5. jmiter性能测试

    1. Jmeter简介Apache JMeter是一款纯java编写负载功能测试和性能测试开源工具软件.相比Loadrunner而言,JMeter小巧轻便且免费,逐渐成为了主流的性能测试工具,是每个测 ...

  6. 深入Dockerfile(一): 语法指南(转)

    最近在学习K8S,发现这两篇文章还不错,转了过来 docker官方文档Dockerfile reference的笔记. 一.机制 1.1 构建 docker构建一个镜像,需要: Dockerfile文 ...

  7. PHP的ob_flush()与flush()区别

    PHP的ob_flush()与flush()区别 标签: php ob-flush flush buffer 2017年03月24日 17:50:393248人阅读 评论(0) 收藏 举报  分类: ...

  8. 【Spring学习】Spring的源码解析之路 ——【step1】基础环境配置 + IDEA快捷键整理

    前导: 本次主要是关于“基础环境搭建”的内容,分为三个部分,(1)查看源码和项目需要的开发集成环境Intellig IDEA的使用,(2)如何导入源码,(3)在这个过程中梳理出的快捷键 正文:==== ...

  9. Python:a,*args,**kwargs的理解

    1.何时用这些参数? 在任何时候继承类和重写方法时,应当用到’*args’和’**kwargs’将接收到的位置参数和键值参数给父类方法 . 2.一句话清晰说明: a是常规的变量类型,比如int,str ...

  10. IIS7/8下提示 HTTP 错误 404.13 - Not Found 请求筛选模块被配置为拒绝超过请求内容长度的请求

    IIS7的设置和IIS6有很多不同之处,这里提到的的是一个上传附件大小设置的问题. HTTP 错误 404.13 - Not Found 请求筛选模块被配置为拒绝超过请求内容长度的请求. 原因:Web ...