【BZOJ5294】[BJOI2018]二进制(线段树)
【BZOJ5294】[BJOI2018]二进制(线段树)
题面
题解
二进制串在模\(3\)意义下,每一位代表的余数显然是\(121212\)这样子交替出现的。
其实换种方法看,就是\(1,-1,1,-1,...\)
如果询问一个二进制串能否被\(3\)整除,那么只需要考虑奇数位上的\(1\)的个数和偶数位上的\(1\)的个数就行了。
如果可以重排,我们来考虑如何分配。
首先对于一个长度为\(len\)的区间,模\(3\)余\(1\)的位有\([\frac{len+1}{2}]\)个,余\(-1\)的有\([\frac{len}{2}]\)个。假设要分配\(k\)个\(1\)。
凑成\(3\)的倍数的情况一定是\(1,-1\)两两配对,剩下较多的那个的数量是\(3\)的倍数。
如果\(k\)是偶数那么一定可以两两配对。
如果\(k\)是奇数的话,就只能\(k-3\)个\(1\)均匀分配给\(-1,1\),剩下\(3\)个分配给\(1\)。
那么需要满足\(\frac{k+3}{2}\le [\frac{len+1}{2}]\),拆开后如果\(len\)是奇数则要满足\(k\le len-2\),如果\(len\)是偶数则满足\(k\le len-3\)。
那么这个条件再进一步就是,如果\(0\)的个数\(\ge 3\),那么一定满足。
如果\(0\)的个数为\(2\),此时\(len=k+2\) 为奇数,也满足。
所以不合法的情况就是
- 只有一个\(1\)的区间(\(k\lt 3\),且\(k\)为奇数就只有\(1\))
- 出现了奇数个\(1\),且\(0\)的个数为\(0/1\)。
因为要做到不重,所以第一个条件可以补充成“区间内只有\(1\)个\(1\),且\(0\)的个数不少于\(2\)个”。
答案就可以用总的连续子序列的个数减去不合法的数量。
可以用线段树维护不合法的连续子序列的数量。
考虑合并两个节点之后如何产生贡献,
设\(dl[0/1][0/1]\)表示强制选择左端点的一段连续区间中,\(0\)的出现次数为\(0/1\),\(1\)的出现次数的奇偶性为\(0/1\)的序列个数,\(dr\)同理。
\(fl[0/1/2]\)表示强制经过左端点,\(1\)恰好出现了\(1\)次,且\(0\)的出现次数为\(0,1,\ge 2\)的序列个数。\(fr\)同理。
再统计一下左右连续的\(0\)的个数,以及区间内\(0/1\)的个数。
每次考虑跨过两段的不合法区间,统计答案即可。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 100100
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,Q,a[MAX];
struct data
{
ll dl[2][2],dr[2][2],fl[3],fr[3],l0,r0,s;
int s0,s1;
void init()
{
dl[0][0]=dr[0][0]=dl[0][1]=dr[0][1]=dl[1][0]=dr[1][0]=dl[1][1]=dr[1][1]=0;
fl[0]=fr[0]=fl[1]=fr[1]=fl[2]=fr[2]=0;
l0=r0=s0=s1=s=0;
}
data(){init();}
void pre(int x)
{
init();
if(x)dl[0][1]=dr[0][1]=s1=s=fl[0]=fr[0]=1;
else dl[1][0]=dr[1][0]=s0=l0=r0=1;
}
}t[MAX<<2];
data Merge(data A,data B)
{
data c;c.init();
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
{
c.dl[i][j]+=A.dl[i][j];
c.dr[i][j]+=B.dr[i][j];
if(i>=A.s0)c.dl[i][j]+=B.dl[i-A.s0][j^(A.s1&1)];
if(i>=B.s0)c.dr[i][j]+=A.dr[i-B.s0][j^(B.s1&1)];
}
for(int i=0;i<3;++i)
{
c.fl[i]+=A.fl[i];c.fr[i]+=B.fr[i];
if(!A.s1)c.fl[min(2,i+A.s0)]+=B.fl[i];
if(!B.s1)c.fr[min(2,i+B.s0)]+=A.fr[i];
}
if(A.s1==1&&B.l0)c.fl[min(2ll,A.s0+B.l0)]+=1,c.fl[2]+=B.l0-1;
if(B.s1==1&&A.r0)c.fr[min(2ll,B.s0+A.r0)]+=1,c.fr[2]+=A.r0-1;
c.l0=(A.s1==0)?A.l0+B.l0:A.l0;
c.r0=(B.s1==0)?B.r0+A.r0:B.r0;
c.s0=A.s0+B.s0;c.s1=A.s1+B.s1;
c.s=A.s+B.s;
c.s+=A.dr[0][0]*(B.dl[0][1]+B.dl[1][1]);
c.s+=A.dr[0][1]*(B.dl[0][0]+B.dl[1][0]);
c.s+=A.dr[1][0]*B.dl[0][1];
c.s+=A.dr[1][1]*B.dl[0][0];
if(B.l0)c.s+=B.l0*(A.fr[0]+A.fr[1]+A.fr[2])-A.fr[0];
if(A.r0)c.s+=A.r0*(B.fl[0]+B.fl[1]+B.fl[2])-B.fl[0];
return c;
}
void Build(int now,int l,int r)
{
if(l==r){t[now].pre(a[l]);return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=Merge(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int p)
{
if(l==r){t[now].pre(a[l]);return;}
int mid=(l+r)>>1;
if(p<=mid)Modify(lson,l,mid,p);
else Modify(rson,mid+1,r,p);
t[now]=Merge(t[lson],t[rson]);
}
data Query(int now,int l,int r,int L,int R)
{
if(L==l&&R==r)return t[now];
int mid=(l+r)>>1;
if(R<=mid)return Query(lson,l,mid,L,R);
if(L>mid)return Query(rson,mid+1,r,L,R);
return Merge(Query(lson,l,mid,L,mid),Query(rson,mid+1,r,mid+1,R));
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
Build(1,1,n);
Q=read();
while(Q--)
{
int opt=read(),l=read(),r;
if(opt==1)a[l]^=1,Modify(1,1,n,l);
else r=read(),printf("%lld\n",1ll*(r-l+1)*(r-l+2)/2-Query(1,1,n,l,r).s);
}
return 0;
}
【BZOJ5294】[BJOI2018]二进制(线段树)的更多相关文章
- BZOJ5294 BJOI2018 二进制 线段树
传送门 因为每一位\(\mod 3\)的值为\(1,2,1,2,...\),也就相当于\(1,-1,1,-1,...\) 所以当某个区间的\(1\)的个数为偶数的时候,一定是可行的,只要把这若干个\( ...
- 2019.02.12 bzoj5294: [Bjoi2018]二进制(线段树)
传送门 题意简述: 给出一个长度为nnn的二进制串. 你需要支持如下操作: 修改每个位置:1变0,0变1 询问对于一个区间的子二进制串有多少满足重排之后转回十进制值为333的倍数(允许前导000). ...
- BZOJ5294 BJOI2018二进制(线段树)
二进制数能被3整除相当于奇数.偶数位上1的个数模3同余.那么如果有偶数个1,一定存在重排方案使其合法:否则则要求至少有两个0且至少有3个1,这样可以给奇数位单独安排3个1. 考虑线段树维护区间内的一堆 ...
- BZOJ5294 [BJOI2018] 二进制 【线段树】
BJOI的题目感觉有点难写 题目分析: 首先推一波结论.接下来的一切都在模3意义下 现在我们将二进制位重组,不难发现的是2^0≡1,2^1≡2,2^2≡1,2^3≡2....所以我们考虑这样的式子 2 ...
- 中国石油大学(华东)暑期集训--二进制(BZOJ5294)【线段树】
问题 C: 二进制 时间限制: 1 Sec 内存限制: 128 MB提交: 8 解决: 2[提交] [状态] [讨论版] [命题人:] 题目描述 pupil发现对于一个十进制数,无论怎么将其的数字 ...
- nowcoder 211E - 位运算?位运算! - [二进制线段树][与或线段树]
题目链接:https://www.nowcoder.com/acm/contest/211/E 题目描述 请实现一个数据结构支持以下操作:区间循环左右移,区间与,区间或,区间求和. 输入描述: 第一行 ...
- Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)
题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...
- 洛谷P4428二进制 [BJOI2018] 线段树
正解:线段树 解题报告: 传送门! 话说开始看到这题的时候我想得hin简单 因为关于%3有个性质就是说一个数的各个位数之和%3=这个数%3嘛,小学基础知识? 我就想着,就直接建一棵树,只是这棵树要用个 ...
- POJ 2777 Count Color(线段树染色,二进制优化)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 42940 Accepted: 13011 Des ...
随机推荐
- 容器化-Docker实战
导读:本文系统性介绍Docker安装.Docker组件.Docker命令.Dockerfile语法和Docker应用,通过上述介绍使我们已经对docker基本操作有一定了解. 一.前言 本文将系统性的 ...
- 使用队列queue实现一个简单的生产者消费者模型
一.生产者消费者模型 我们去超市商店等地购买商品时,我们大部分人都会说自己是消费者,而超市的各大供货商.工厂等,自然而然地也就成了我们的生产者.如此一来,生产者有了,消费者也有了,那么将二者联系起来的 ...
- Is-a
在知识表示.面向对象程序设计与面向对象设计的领域里, is-a(英语:subsumption,包含架构)指的是类的父子继承关系, 例如类D是另一个类B的子类(类B是类D的父类). 换句话说,通常&qu ...
- C# 父子页面传值
业务需求是:父页面点击“选择任务”按钮进入任务列表页.(项目进度周报) 父页面如下: 任务列表页: 选择某一个任务,点击“确定”后返回父页面所需数据. 父页面“选择任务” 按钮触发事件. /// &l ...
- jquery on绑定事件
描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...
- [转帖]SAP一句话入门:Project System
SAP一句话入门:Project System http://blog.vsharing.com/MilesForce/A621279.html 这是SAP ERP入门的最后一篇了. 我们这些死跑龙套 ...
- Linux上的一些基本常用命令
上传下载文件:// 首先安装lrzsz # yum -y install lrzsz // 上传文件,执行命令rz,会跳出文件选择窗口,选择好文件,点击确认即可.# rz // 下载文件,执行命令sz ...
- .Net批量插入数据
1. 一般我们普通数据插入是这样的: 现在我们写一个控制台程序用常规办法添加10000条数据. //以下是批量插入数据的办法 //连接字符串 string str = "Server=.;D ...
- bootStrap的使用
1.首先要打开bootstrap的官网 点进去 2你会看到下面这样一个页面里面有很多组件 这里面的代码是实现组件功能的核心代码,还不能直接使用,要引入相关的js css 我们要在起步中下载相关的页面下 ...
- Window下通过SecureCRT的SSH2跳转到另一台Linux服务器
我工作中的示例: 先登录192.168.2.145 Your password will be expired in 200 days.Welcome to Baoleiji System.Last ...