描述

Bessie is playing a number game against Farmer John, and she wants you to help her achieve victory.

Game i starts with an integer N_i (1 <= N_i <= 1,000,000). Bessie goes first, and then the two players alternate turns. On each turn, a player can subtract either the largest digit or the smallest non-zero digit from the current number to obtain a new number. For example, from 3014 we may subtract either 1 or 4 to obtain either 3013 or 3010, respectively. The game continues until the number becomes 0, at which point the last player to have taken a turn is the winner.

Bessie and FJ play G (1 <= G <= 100) games. Determine, for each game, whether Bessie or FJ will win, assuming that both play perfectly (that is, on each turn, if the current player has a move that will guarantee his or her win, he or she will take it).

Consider a sample game where N_i = 13. Bessie goes first and takes 3, leaving 10. FJ is forced to take 1, leaving 9. Bessie takes the remainder and wins the game.

输入

* Line 1: A single integer: G

* Lines 2..G+1: Line i+1 contains the single integer: N_i

输出

* Lines 1..G: Line i contains "YES" if Bessie can win game i, and "NO" otherwise.

样例输入

2
9
10

样例输出

YES
NO

提示

OUTPUT DETAILS:

For the first game, Bessie simply takes the number 9 and wins. For the second game, Bessie must take 1 (since she cannot take 0), and then FJ can win by taking 9.

题意

A和B在玩游戏,给一个数a,轮到A,可以把数变成a-最大的数,a-最小的非零数,B同理,谁把值变成0谁赢

题解

观察一下可以发现,只要知道a-最大的数的sg值和a-最小的非零数的sg值,再异或1就是答案

因为先手只可以选最大或最小,后面不管怎么拿都是定死了

代码

 #include<bits/stdc++.h>
using namespace std; int sg[],n,a,t,mx,mi;
void m(int x)
{
mx=-,mi=;
do{
t=x%;
if(t)mx=max(mx,t);
if(t)mi=min(mi,t);
x/=;
}while(x);
}
int main()
{
sg[]=;
for(int i=;i<=;i++)m(i),sg[i]=(sg[i-mx]^)|(sg[i-mi]^);
scanf("%d",&n);
while(n--)
{
scanf("%d",&a);
printf("%s\n",sg[a]?"YES":"NO");
}
return ;
}

TZOJ 2703 Cow Digit Game(sg博弈)的更多相关文章

  1. TOJ 2703: Cow Digit Game

    2703: Cow Digit Game Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByte Total Submit ...

  2. BZOJ3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 47  Solved ...

  3. 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏

    3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 72  Solved ...

  4. 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

    洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...

  5. UVA12293 Box Game —— SG博弈

    题目链接:https://vjudge.net/problem/UVA-12293 题意: 两人玩游戏,有两个盒子,开始时第一个盒子装了n个球, 第二个盒子装了一个球.每次操作都将刷量少的盒子的球倒掉 ...

  6. UVA1482 Playing With Stones —— SG博弈

    题目链接:https://vjudge.net/problem/UVA-1482 题意: 有n堆石子, 每堆石子有ai(ai<=1e18).两个人轮流取石子,要求每次只能从一堆石子中抽取不多于一 ...

  7. HDU 1848(sg博弈) Fibonacci again and again

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  8. [USACO09OPEN]牛的数字游戏Cow Digit Game 博弈

    题目描述 Bessie is playing a number game against Farmer John, and she wants you to help her achieve vict ...

  9. 【博弈论】【SG函数】bzoj3404 [Usaco2009 Open]Cow Digit Game又见数字游戏

    #include<cstring> #include<cstdio> #include<algorithm> #include<set> using n ...

随机推荐

  1. android studio Authentication failed for

    今天更新项目代码提示   Authentication failed for  后来一起是把git平台密码修改了 忘了修改android studio 密码所以更新失败 我在android studi ...

  2. mybatis与Spring

    提问1:如果没有spring-mybatis,我们如何在spring中使用定义bean,如何使用事务? mybatis-Spring为我们带来多种方式的Mapper接口的注册,扫描,识别. 如果不使用 ...

  3. ubuntu10.04换官方源

    ubuntu10.04LTS官方已经不再维护,导致部分软件.库文件等下载有问题,可换以下源地址解决问题 deb http://old-releases.ubuntu.com/ubuntu lucid ...

  4. idea springboot 父子工程 子工程maven不自动import

    父工程删除对spring boot启动项的引用,因为父工程 dependencyManagement,它不会自动加载包,只指定包的版本, 如果在父工程中引用了包,但是没有指定包版本,子工程将不会识别到 ...

  5. vue设置路由跳转参数,以及接收参数

    最近做Vue项目,遇到了一个路由跳转问题:首页要跳转到项目页指定的Tab选项卡项,一开始总是跳到默认项.解决方法如下: 在跳转链接处设置了路由跳转参数,如下: <router-link  :to ...

  6. 解决导出CSV后在EXCEL打开纯数字前面0丢失问题

    select ip ,concat('="',accountname,'"')select ip ,concat('="',accountname,'"')

  7. DLC 复合逻辑运算

    与非逻辑运算 或非逻辑运算 与或非逻辑运算 异或逻辑运算 同或逻辑运算

  8. update_db_inputs.conf

    #!/bin/bash#-------------------------------------------------------------------------------# Name: u ...

  9. python-day5内置模块time、range、sys、os、shelve、xml、max等

    @os树状目录 import os,os.path def showdir(path,depth):    if depth==0:        print(path)    for item in ...

  10. 判断IOS、Android访问

    /*判断手机访问是Android还是IOS*/ $user_agent = $_SERVER['HTTP_USER_AGENT']; if(stripos($user_agent, "iPh ...