TZOJ 2703 Cow Digit Game(sg博弈)
描述
Bessie is playing a number game against Farmer John, and she wants you to help her achieve victory.
Game i starts with an integer N_i (1 <= N_i <= 1,000,000). Bessie goes first, and then the two players alternate turns. On each turn, a player can subtract either the largest digit or the smallest non-zero digit from the current number to obtain a new number. For example, from 3014 we may subtract either 1 or 4 to obtain either 3013 or 3010, respectively. The game continues until the number becomes 0, at which point the last player to have taken a turn is the winner.
Bessie and FJ play G (1 <= G <= 100) games. Determine, for each game, whether Bessie or FJ will win, assuming that both play perfectly (that is, on each turn, if the current player has a move that will guarantee his or her win, he or she will take it).
Consider a sample game where N_i = 13. Bessie goes first and takes 3, leaving 10. FJ is forced to take 1, leaving 9. Bessie takes the remainder and wins the game.
输入
* Line 1: A single integer: G
* Lines 2..G+1: Line i+1 contains the single integer: N_i
输出
* Lines 1..G: Line i contains "YES" if Bessie can win game i, and "NO" otherwise.
样例输入
2
9
10
样例输出
YES
NO
提示
OUTPUT DETAILS:
For the first game, Bessie simply takes the number 9 and wins. For the second game, Bessie must take 1 (since she cannot take 0), and then FJ can win by taking 9.
题意
A和B在玩游戏,给一个数a,轮到A,可以把数变成a-最大的数,a-最小的非零数,B同理,谁把值变成0谁赢
题解
观察一下可以发现,只要知道a-最大的数的sg值和a-最小的非零数的sg值,再异或1就是答案
因为先手只可以选最大或最小,后面不管怎么拿都是定死了
代码
- #include<bits/stdc++.h>
- using namespace std;
- int sg[],n,a,t,mx,mi;
- void m(int x)
- {
- mx=-,mi=;
- do{
- t=x%;
- if(t)mx=max(mx,t);
- if(t)mi=min(mi,t);
- x/=;
- }while(x);
- }
- int main()
- {
- sg[]=;
- for(int i=;i<=;i++)m(i),sg[i]=(sg[i-mx]^)|(sg[i-mi]^);
- scanf("%d",&n);
- while(n--)
- {
- scanf("%d",&a);
- printf("%s\n",sg[a]?"YES":"NO");
- }
- return ;
- }
TZOJ 2703 Cow Digit Game(sg博弈)的更多相关文章
- TOJ 2703: Cow Digit Game
2703: Cow Digit Game Time Limit(Common/Java):1000MS/10000MS Memory Limit:65536KByte Total Submit ...
- BZOJ3404: [Usaco2009 Open]Cow Digit Game又见数字游戏
3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 47 Solved ...
- 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏
3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 72 Solved ...
- 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game
洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...
- UVA12293 Box Game —— SG博弈
题目链接:https://vjudge.net/problem/UVA-12293 题意: 两人玩游戏,有两个盒子,开始时第一个盒子装了n个球, 第二个盒子装了一个球.每次操作都将刷量少的盒子的球倒掉 ...
- UVA1482 Playing With Stones —— SG博弈
题目链接:https://vjudge.net/problem/UVA-1482 题意: 有n堆石子, 每堆石子有ai(ai<=1e18).两个人轮流取石子,要求每次只能从一堆石子中抽取不多于一 ...
- HDU 1848(sg博弈) Fibonacci again and again
Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- [USACO09OPEN]牛的数字游戏Cow Digit Game 博弈
题目描述 Bessie is playing a number game against Farmer John, and she wants you to help her achieve vict ...
- 【博弈论】【SG函数】bzoj3404 [Usaco2009 Open]Cow Digit Game又见数字游戏
#include<cstring> #include<cstdio> #include<algorithm> #include<set> using n ...
随机推荐
- IIS发布ASP.NET Core
安装IIS.程序和功能--程序卸载--启用或关闭Windows功能 安装.NET Core SDK和Runtime.下载网址 https://www.microsoft.com/net/downloa ...
- element-ui-verify使用
element-ui-verify是对ElementUI原本的校验封装之后的插件,并不会影响使用ElementUI的原生校验. 使用环境为vue+element-ui+webpack模块环境,首先使用 ...
- RAMDISK 内存盘工具推荐
好了直接推荐, 1.魔方内存盘 使用方便 ,但是关机后消失.绿色 2.Primo Ramdisk Ultimate Edition5.5 3.GiliSoft RAMDisk 4.QSoft RAM ...
- idea 炫酷插件
1.插件的安装 打开setting文件选择Plugins选项 Ctrl + Alt + S File -> Setting 分别是安装JetBrains插件,第三方插件,本地已下载的插件包.详情 ...
- Docker笔记——jenkins镜像制作
jenkins官方路径:https://hub.docker.com/_/jenkins/ 最新Dockerfile路径:https://github.com/jenkinsci/docker/blo ...
- leetcode每日刷题计划-简单篇day6
突发奇想&胡思乱想的一天 银行家算法证明错了并挂在黑板上的可怜希希 Num 53 最大子序和 Maximum Subarray O(n)的算法实现了,分治法有空补 class Solution ...
- LeetCode 104. Maximum Depth of Binary Tree二叉树的最大深度 C++/Java
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
- mysql导入excel表格
https://jingyan.baidu.com/album/fc07f9891cb56412ffe5199a.html?picindex=1
- Django11-ModelForm
一.定义ModelForm类 # 创建部门表单校验 class DepartmentForm(forms.ModelForm): class Meta: model = models.Departme ...
- python安装selenium和下载浏览器驱动
1.安装selenium 方法一:可以用在cmd中用pip命令安装. python默认自带pip工具,如果在电脑上配置了pip的环境变量,打开cmd命令窗口后可以直接输入命令pip insta ...