参考:https://blog.csdn.net/u013733326/article/details/79971488

希望大家直接到上面的网址去查看代码,下面是本人的笔记

 到目前为止,我们一直在使用numpy来自己编写神经网络。现在我们将一步步的使用深度学习的框架来很容易的构建属于自己的神经网络。我们将学习TensorFlow这个框架:

  • 初始化变量
  • 建立一个会话
  • 训练的算法
  • 实现一个神经网络

使用框架编程不仅可以节省你的写代码时间,还可以让你的优化速度更快。

1.导入TensorFlow库

import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
import tf_utils
import time #%matplotlib inline #如果你使用的是jupyter notebook取消注释
np.random.seed()

2.说明TensorFlow代码的实现流程

对于Tensorflow的代码实现而言,实现代码的结构如下:

  1. 创建Tensorflow变量(此时,尚未直接计算)

  2. 实现Tensorflow变量之间的操作定义

  3. 初始化Tensorflow变量

  4. 创建Session

  5. 运行Session,此时,之前编写操作都会在这一步运行。

1)所以举例如果要计算损失函数:

实现流程为:

#首先创建变量,这里设置了常量
y_hat = tf.constant(,name="y_hat") #定义y_hat为固定值36
y = tf.constant(,name="y") #定义y为固定值39 #实现变量之间的操作定义,即损失函数的计算
loss = tf.Variable((y-y_hat)**,name="loss" ) #为损失函数创建一个变量 #声明变量的初始化操作
init = tf.global_variables_initializer() #运行之后的初始化(session.run(init)) #创建session,并打印输出
#损失变量将被初始化并准备计算
with tf.Session() as session:
#初始化变量
session.run(init)
#运行session,这样之前定义的变量间的操作都会在这里运行,打印损失值
print(session.run(loss))

返回9

查看初始化和运行前后变量的变化:

#首先创建变量
y_hat = tf.constant(,name="y_hat") #定义y_hat为固定值36
y = tf.constant(,name="y") #定义y为固定值39 #实现变量之间的操作定义,即损失函数的计算
loss = tf.Variable((y-y_hat)**,name="loss" ) #为损失函数创建一个变量
print(y_hat)
print(y)
print(loss) #声明变量的初始化操作
init = tf.global_variables_initializer() #运行之后的初始化(session.run(init)) #创建session,并打印输出
#损失变量将被初始化并准备计算
with tf.Session() as session:
#初始化变量
session.run(init)
print(y_hat)
print(y)
print(loss)
#运行session,这样之前定义的变量间的操作都会在这里运行,打印损失值
print(session.run(loss))
print(y_hat)
print(y)

返回:

Tensor("y_hat_2:0", shape=(), dtype=int32)
Tensor("y_2:0", shape=(), dtype=int32)
<tf.Variable 'loss_2:0' shape=() dtype=int32_ref>
Tensor("y_hat_2:0", shape=(), dtype=int32)
Tensor("y_2:0", shape=(), dtype=int32)
<tf.Variable 'loss_2:0' shape=() dtype=int32_ref> Tensor("y_hat_2:0", shape=(), dtype=int32)
Tensor("y_2:0", shape=(), dtype=int32)

再运行一遍,可见版本号会变:

Tensor("y_hat_3:0", shape=(), dtype=int32)
Tensor("y_3:0", shape=(), dtype=int32)
<tf.Variable 'loss_3:0' shape=() dtype=int32_ref>
Tensor("y_hat_3:0", shape=(), dtype=int32)
Tensor("y_3:0", shape=(), dtype=int32)
<tf.Variable 'loss_3:0' shape=() dtype=int32_ref> Tensor("y_hat_3:0", shape=(), dtype=int32)
Tensor("y_3:0", shape=(), dtype=int32)

如果注释掉初始化就会报错:

#首先创建变量
y_hat = tf.constant(,name="y_hat") #定义y_hat为固定值36
y = tf.constant(,name="y") #定义y为固定值39 #实现变量之间的操作定义,即损失函数的计算
loss = tf.Variable((y-y_hat)**,name="loss" ) #为损失函数创建一个变量
print(y_hat)
print(y)
print(loss) #声明变量的初始化操作
#init = tf.global_variables_initializer() #运行之后的初始化(session.run(init)) #创建session,并打印输出
#损失变量将被初始化并准备计算
with tf.Session() as session:
#初始化变量
#session.run(init)
#运行session,这样之前定义的变量间的操作都会在这里运行,打印损失值
print(session.run(loss))
print(y_hat)
print(y)

返回:

Tensor("y_hat_5:0", shape=(), dtype=int32)
Tensor("y_5:0", shape=(), dtype=int32)
<tf.Variable 'loss_5:0' shape=() dtype=int32_ref>
...
FailedPreconditionError: Attempting to use uninitialized value loss_5
[[{{node _retval_loss_5_0_0}} = _Retval[T=DT_INT32, index=, _device="/job:localhost/replica:0/task:0/device:CPU:0"](loss_5)]]

因此,当我们为损失函数创建一个变量时,我们简单地将损失定义为其他数量的函数,但没有评估它的价值。

为了评估它,我们需要运行init=tf.global_variables_initializer(),初始化损失变量,在最后一行,我们最后能够评估损失的值并打印它的值。

所以init=tf.global_variables_initializer()的作用对应的是声明为变量的损失函数loss = tf.Variable((y-y_hat)**2,name="loss" )

2)另外一个更简单的函数

#创建变量
a = tf.constant()
b = tf.constant()
#实现变量之间的操作定义
c = tf.multiply(a,b) print(c)

返回:

Tensor("Mul:0", shape=(), dtype=int32)

正如预料中一样,我们并没有看到结果20,不过我们得到了一个Tensor类型的变量,没有维度,数字类型为int32。我们之前所做的一切都只是把这些东西放到了一个“计算图(computation graph)”中,而我们还没有开始运行这个计算图,为了实际计算这两个数字,我们需要创建一个会话并运行它:

#创建会话
sess = tf.Session()
#使用会话运行操作
print(sess.run(c)) #返回20

⚠️因为这里没有声明变量,所以不用使用init=tf.global_variables_initializer()来初始化变量

总结一下,记得初始化变量,然后创建一个session来运行它。

3.会话

可以使用两种方法来创建并使用session
方法一:

sess = tf.Session()
result = sess.run(...,feed_dict = {...})
sess.close()

方法二:

with tf.Session as sess:
result = sess.run(...,feed_dict = {...})

4.占位符(placeholder)

占位符是一个对象,它的值只能在稍后指定,要指定占位符的值,可以使用一个feed_dict变量来传入,接下来,我们为x创建一个占位符,这将允许我们在稍后运行会话时传入一个数字。

#利用feed_dict来改变x的值

x = tf.placeholder(tf.int64,name="x")
print(x)
print(sess.run( * x,feed_dict={x:}))
sess.close()

返回:

Tensor("x:0", dtype=int64)

当我们第一次定义x时,我们不必为它指定一个值。 占位符只是一个变量,我们会在运行会话时将数据分配给它。

5.线性函数
让我们通过计算以下等式来开始编程:Y=WX+b,W和X是随机矩阵,b是随机向量。
我们计算WX+b,其中W,X和b是从随机正态分布中抽取的。 W的维度是(4,3),X是(3,1),b是(4,1)。

我们开始定义一个shape=(3,1)的常量X:

X = tf.constant(np.random.randn(,), name = "X")

代码:

def linear_function():
"""
实现一个线性功能:
初始化W,类型为tensor的随机变量,维度为(,)
初始化X,类型为tensor的随机变量,维度为(,)
初始化b,类型为tensor的随机变量,维度为(,)
返回:
result - 运行了session后的结果,运行的是Y = WX + b """ np.random.seed() #指定随机种子 X = np.random.randn(,)
W = np.random.randn(,)
b = np.random.randn(,) Y = tf.add(tf.matmul(W,X),b) #tf.matmul是矩阵乘法
#Y = tf.matmul(W,X) + b #也可以以写成这样子 #创建一个session并运行它
sess = tf.Session()
result = sess.run(Y) #session使用完毕,关闭它
sess.close() return result

测试:

print("result = " +  str(linear_function()))

返回:

result = [[-2.15657382]
[ 2.95891446]
[-1.08926781]
[-0.84538042]]

6.计算sigmoid函数

TensorFlow提供了多种常用的神经网络的函数比如tf.softmax和 tf.sigmoid

我们将使用占位符变量x,当运行这个session的时候,我们西药使用使用feed_dict来输入z,我们将创建占位符变量x,使用tf.sigmoid来定义操作,最后运行session,我们会用到下面的代码:

  • tf.placeholder(tf.float32, name = “x”)
  • sigmoid = tf.sigmoid(x)
  • sess.run(sigmoid, feed_dict = {x: z})

实现:

def sigmoid(z):
"""
实现使用sigmoid函数计算z 参数:
z - 输入的值,标量或矢量 返回:
result - 用sigmoid计算z的值 """ #创建一个占位符x,名字叫“x”
x = tf.placeholder(tf.float32,name="x") #计算sigmoid(z)
sigmoid = tf.sigmoid(x) #创建一个会话,使用方法二
with tf.Session() as sess:
result = sess.run(sigmoid,feed_dict={x:z}) return result

测试:

print ("sigmoid(0) = " + str(sigmoid()))
print ("sigmoid(12) = " + str(sigmoid()))

返回:

sigmoid() = 0.5
sigmoid() = 0.9999938

7.计算成本函数

还可以使用内置函数计算神经网络的成本。因此,不需要编写代码来计算成本函数的 a[2](i)
和 y(i),如:

tensorflow提供了用来计算成本的函数:

tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...)

logits:前向传播的结果AL,如果使用的是softmax,这里传入的是ZL

labels:真正的结果Y

8.使用独热编码(0,1编码)

很多时候在深度学习中y向量的维度是从0到C−1的,C是指分类的类别数量,如果C=4,那么对y而言你可能需要有以下的转换方式:

这叫做独热编码(”one hot” encoding),因为在转换后的表示中,每列的一个元素是“hot”(意思是设置为1)。 要在numpy中进行这种转换,您可能需要编写几行代码。 在tensorflow中,只需要使用一行代码:

tf.one_hot(labels,depth,axis)

下面我们要做的是取一个标签矢量(即图片的判断结果)和C类总数,返回一个独热编码。

def one_hot_matrix(lables,C):
"""
创建一个矩阵,其中第i行对应第i个类号,第j列对应第j个训练样本
所以如果第j个样本对应着第i个标签,那么entry (i,j)将会是1 参数:
lables - 标签向量
C - 分类数 返回:
one_hot - 独热矩阵 """ #创建一个tf.constant,赋值为C,名字叫C
C = tf.constant(C,name="C") #使用tf.one_hot,注意一下axis
one_hot_matrix = tf.one_hot(indices=lables , depth=C , axis=) #创建一个session
sess = tf.Session() #运行session
one_hot = sess.run(one_hot_matrix) #关闭session
sess.close() return one_hot

测试:

labels = np.array([,,,,,])
one_hot = one_hot_matrix(labels,C=)
print(str(one_hot))

返回:

[[. . . . . .]
[. . . . . .]
[. . . . . .]
[. . . . . .]]

9.初始化参数

学习如何用0或者1初始化一个向量,我们要用到tf.ones()tf.zeros(),给定这些函数一个维度值那么它们将会返回全是1或0的满足条件的向量/矩阵,我们来看看怎样实现它们:

def ones(shape):
"""
创建一个维度为shape的变量,其值全为1 参数:
shape - 你要创建的数组的维度 返回:
ones - 只包含1的数组
""" #使用tf.ones()
ones = tf.ones(shape) #创建会话
sess = tf.Session() #运行会话
ones = sess.run(ones) #关闭会话
sess.close() return ones

测试:

print ("ones = " + str(ones([])))

返回:

ones = [. . .]

吴恩达课后作业学习2-week3-tensorflow learning-1-基本概念的更多相关文章

  1. 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课 ...

  2. 吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准 ...

  3. 吴恩达课后作业学习2-week1-1 初始化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 ...

  4. 吴恩达课后作业学习2-week1-2正则化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 ...

  5. 吴恩达课后作业学习1-week2-homework-logistic

    参考:https://blog.csdn.net/u013733326/article/details/79639509 希望大家直接到上面的网址去查看代码,下面是本人的笔记 搭建一个能够 “识别猫” ...

  6. 吴恩达课后作业学习1-week3-homework-one-hidden-layer

    参考:https://blog.csdn.net/u013733326/article/details/79702148 希望大家直接到上面的网址去查看代码,下面是本人的笔记 建立一个带有隐藏层的神经 ...

  7. 吴恩达课后作业学习2-week2-优化算法

    参考:https://blog.csdn.net/u013733326/article/details/79907419 希望大家直接到上面的网址去查看代码,下面是本人的笔记 我们需要做以下几件事:  ...

  8. 吴恩达课后作业学习2-week3-tensorflow learning-1-例子学习

    参考:https://blog.csdn.net/u013733326/article/details/79971488 使用TensorFlow构建你的第一个神经网络 我们将会使用TensorFlo ...

  9. 吴恩达课后作业学习2-week1-3梯度校验

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 5.梯度校验 在我们执行 ...

随机推荐

  1. 3;XHTML排列清单控制标记

    1.无序号条例式清单<ul> 2.有序号条例式清单<ol> 3.无序列表和有序列表的结合应用 4.叙述式清单<dl> 排列清单控制标记可以创建一般的列表.编号列表或 ...

  2. 如何用ABP框架快速完成项目(2) - 快的定义!

    为什么要从快的角度来讲这系列课程呢?   因为快是一个很统一很清晰的标准. 所有人对时间都有一个统一清晰的概念.  比如说这系列课程会讲到的一个实例: 集成LinqToExcel, 用我的方法大概耗时 ...

  3. Xamarin.Forms 使用本地数据库之 SQLite

    前言 Xamarin.Forms支持使用SQLite数据库引擎.本文介绍了Xamarin.Forms应用程序如何读取和写入数据到使用SQLite.Net的本地SQLite数据库. 在Xamarin.F ...

  4. Python HTML解析模块HTMLParser(爬虫工具)

    简介 先简略介绍一下.实际上,HTMLParser是python用来解析HTML的内置模块.它可以分析出HTML里面的标签.数据等等,是一种处理HTML的简便途径.HTMLParser采用的是一种事件 ...

  5. Key Lookup开销过大导致聚集索引扫描

    以前总结过一篇文章SQL SERVER中什么情况会导致索引查找变成索引扫描 介绍了几种索引查找(Index Seek)变成索引扫描(Index Scan)的情形.昨天写一篇文章的时候,也遇到了一个让人 ...

  6. ORA-1652: unable to extend temp segment by 128 in tablespace xxx Troubleshootin

    当收到告警信息ORA-01652: unable to extend temp segment by 128 in tablespace xxxx 时,如何Troubleshooting ORA-16 ...

  7. C#-委托(十七)

    概述 委托(Delegate) 是存有对某个方法的引用的一种引用类型变量 委托特别用于实现事件和回调方法.所有的委托都派生自 System.Delegate 类 委托是一个类,么它就可以被定义在任何地 ...

  8. 我喜欢的vs+va快捷键

    拿到新版的vs,我首先会安装va,然后自定义快捷键.现在有些快捷键被系统占用,可以先remove掉,然后换成自己熟悉的快捷键.需要做到常用快捷键两个按键即可. alt+Q:文件中查询,复杂查询 ctr ...

  9. NoSQL与MongoDB介绍

    写在前面 本文是由一次演讲整理出来的,文中大部分资料来源于网络,感谢Wikipedia,Google和MongoDB官网.文中使用的MongoDB版本为1.2.4. What is NoSQL NoS ...

  10. MongoDB启动文件配置参数详解

    接手的MongoDB只有一个日志文件,体积非常大,排错不便.在找解决办法的时候发现MongoDB的启动文件配置项超级多,于是产生了解释配置参数的想法. mongod服务有两种启动方式 一种是通过配置文 ...