Luogu2860 [USACO06JAN]冗余路径Redundant Paths
Luogu2860 [USACO06JAN]冗余路径Redundant Paths
给定一个连通无向图,求至少加多少条边才能使得原图变为边双连通分量
\(1\leq n\leq5000,\ n-1\leq m\leq10^4\)
tarjan
边双无疑不用考虑,于是就可以边双缩点成一棵树
令现在要连的边为 \((u,\ v)\) ,当前树上 \(bl_u\) 到 \(bl_v\) 的链将会变为一个新的点双,可以将他们看为一个新的点
可以贪心地连边使得每次连边后,不复存在的点尽量多,当只剩一个点时,原图就变成了一个双连通分量
如果 \(u\) 为非叶节点,显然不如将 \(u\) 子树中的一点 \(u'\) 与 \(v\) 连接,于是 \(u,\ v\) 均为叶节点
若 \(lca(u,\ v)\) 为 \(root\) ,将会消去两个叶节点,否则只会消去一个叶节点,因此每次选择 \(lca(u,\ v)\) 为 \(root\) 的两个点,答案即为 \(叶节点的个数\lfloor\frac{\verb|叶节点的个数|+1}{2}\rfloor\)
时间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
using namespace std;
#define nc getchar()
const int maxn = 5010;
int n, m, tot, h[maxn], bl[maxn], dfn[maxn], low[maxn], deg[maxn]; bool vis[maxn], cut[maxn << 1];
struct edges {
int nxt, to;
edges(int x = 0, int y = 0) : nxt(x), to(y) {}
} e[maxn << 1];
inline int read() {
int x = 0; char c = nc;
while (c < 48) c = nc;
while (c > 47) x = x * 10 + c - 48, c = nc;
return x;
}
void addline(int u, int v) {
static int cnt = 1;
e[++cnt] = edges(h[u], v), h[u] = cnt;
}
void tarjan(int u, int f) {
static int now;
dfn[u] = low[u] = ++now;
for (int i = h[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
if (dfn[u] < low[v]) cut[i] = cut[i ^ 1] = 1;
} else if (v != f) {
low[u] = min(low[u], dfn[v]);
}
}
}
void dfs(int u) {
vis[u] = 1, bl[u] = tot;
for (int i = h[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!cut[i] && !vis[v]) dfs(v);
}
}
int main() {
n = read(), m = read();
for (int i = 1; i <= m; i++) {
int u = read(), v = read();
addline(u, v), addline(v, u);
}
tarjan(1, 0);
for (int i = 1; i <= n; i++) {
if (!vis[i]) tot++, dfs(i);
}
for (int u = 1; u <= n; u++) {
for (int i = h[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (bl[u] != bl[v]) deg[bl[v]]++;
}
}
int ans = 0;
for (int i = 1; i <= tot; i++) {
ans += deg[i] == 1;
}
printf("%d", (ans + 1) >> 1);
return 0;
}
Luogu2860 [USACO06JAN]冗余路径Redundant Paths的更多相关文章
- 洛谷 P2860 [USACO06JAN]冗余路径Redundant Paths 解题报告
P2860 [USACO06JAN]冗余路径Redundant Paths 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们 ...
- 缩点【洛谷P2860】 [USACO06JAN]冗余路径Redundant Paths
P2860 [USACO06JAN]冗余路径Redundant Paths 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1- ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- [USACO06JAN] 冗余路径 Redundant Paths
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- luogu P2860 [USACO06JAN]冗余路径Redundant Paths |Tarjan
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- 【luogu P2860 [USACO06JAN]冗余路径Redundant Paths】 题解
题目链接:https://www.luogu.org/problemnew/show/P2860 考虑在无向图上缩点. 运用到边双.桥的知识. 缩点后统计度为1的点. 度为1是有一条路径,度为2是有两 ...
- (精)题解 guP2860 [USACO06JAN]冗余路径Redundant Paths
(写题解不容易,来我的博客玩玩咯qwq~) 该题考察的知识点是边双连通分量 边双连通分量即一个无向图中,去掉一条边后仍互相连通的极大子图.(单独的一个点也可能是一个边双连通分量) 换言之,一个边双连通 ...
随机推荐
- box-sizing 的作用
box-sizing:content-box | border-box content-box: padding和border不被包含在定义的width和height之内.对象的实际宽度等于设置的wi ...
- css3 简易时钟
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 微信小程序获取复选框全选,反选选中的值
wxml文件 <view class="tr"> <view class="th"> <checkbox bindtap=&quo ...
- cf1139D. Steps to One(dp)
题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...
- How do I install Daydream on my phone?
Google's philosophy with their newest VR platform is simple. In order to offer the best possible exp ...
- [Java]Socket和ServerSocket学习笔记
对于即时类应用或者即时类的游戏,HTTP协议很多时候无法满足于我们的需求.这会,Socket对于我们来说就非常实用了.下面是本次学习的笔记.主要分异常类型.交互原理.Socket.ServerSock ...
- recovery 升级前兼容性检查(Vendor Interface Object)
从android P(9.0)版本开始,我们发现编译出来的OTA升级了里面多了一个文件,compatibility.zip,这个里面存储这system与vendor分区的一些特性,用来做升级前的兼容性 ...
- mongodb安装失败与解决方法(附安装教程)
安装mongodb遇到的一些坑 浪费了大量的时间 在此记录一下 主要是电脑系统win10企业版自带的防火墙 当然还有其他的一些坑 一般的问题在第6步骤都可以解决,本教程的安装步骤不够详细的话 ...
- Nginx与Nginx-rtmp-module搭建RTMP视频直播和点播服务器
一.开发环境 Nginx地址: http://nginx.org/download/nginx-1.14.2.tar.gz Nginx-rtmp-module地址: https://github.c ...
- spring4笔记----使用装配注入合作者Bean的三种方式
no :不自动装配 byName :id(name)与setter方法去set前缀,并小写首字母后同名的Bean完成注入,如有多个匹配则抛异常 byType :spring容器找全部bean,如果找到 ...