其实用点权更简单,但这种做法是边权的

/*
依赖背包问题
dp[u][k]表示u结点往下共走k步的最大值
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct Edge{int w,to,nxt;}edge[];
int head[],tot,n,k,dp[][];
void init(){
memset(head,-,sizeof head);
tot=;
}
void addedge(int u,int v,int w){
edge[tot].w=w;edge[tot].to=v;edge[tot].nxt=head[u];head[u]=tot++;
}
void dfs(int u,int pre){
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v!=pre)dfs(v,u);
}
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v==pre)continue;
for(int j=k;j>=;j--)
for(int t=;t<j;t++)
dp[u][j]=max(dp[u][j],dp[u][t]+dp[v][j-t-]+edge[i].w);
}
//printf("%d %d %d %d\n",u,dp[u][0],dp[u][1],dp[u][k]);
}
int main(){
while(cin>>n>>k){
init();
for(int i=;i<n;i++){
int u,v,w;
cin>>u>>v>>w;
addedge(u,v,w);
addedge(v,u,w);
}
memset(dp,,sizeof dp);
dfs(,);
printf("%d\n",dp[][k]);
}
return ;
}

ural1018依赖背包-边权的更多相关文章

  1. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  2. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

  3. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  4. Gym - 101002D:Programming Team (01分数规划+树上依赖背包)

    题意:给定一棵大小为N的点权树(si,pi),现在让你选敲好K个点,需要满足如果如果u被选了,那么fa[u]一定被选,现在要求他们的平均值(pi之和/si之和)最大. 思路:均值最大,显然需要01分数 ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)

    题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...

  7. 依赖背包变形(经典)——poj1155

    这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...

  8. hdu 1561 The more, The Better (依赖背包 树形dp)

    题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...

  9. hdoj1010Starship Troopers (树dp,依赖背包)

    称号:hdoj1010Starship Troopers 题意:有一个军队n个人要占据m个城市,每一个城市有cap的驻扎兵力和val的珠宝,并且这m个城市的占率先后具有依赖关系,军队的每一个人能够打败 ...

随机推荐

  1. SQL Server - 哈希索引

    转载自:https://blog.csdn.net/josjiang1/article/details/80637076 作者:josjiang1 ————————总结———————— 使用场景: 1 ...

  2. 正则表达式、BeautifulSoup、Lxml进行性能对比

    爬取方法 性能 使用难度 安装难度 正则表达式 快 困难 简单(内置) BeautifulSoup 慢 简单 简单 Lxml 快 简单 相对困难

  3. 【leetcode】893. Groups of Special-Equivalent Strings

    Algorithm [leetcode]893. Groups of Special-Equivalent Strings https://leetcode.com/problems/groups-o ...

  4. DAC杂谈一

    DAC种类: 有权电阻网络DAC 输出电压变化范围为:0~-(2^n-1)/2^n*Vref 当位数很高时,每个电阻都有很高精度是十分困难的. 倒T型电阻网络DAC(比如AD7520 10bit 已停 ...

  5. ibevent 和 libev 提高网络应用性能【转】

    转自:https://www.cnblogs.com/kunhu/p/3632285.html 构建现代的服务器应用程序需要以某种方法同时接收数百.数千甚至数万个事件,无论它们是内部请求还是网络连接, ...

  6. 从url(地址栏)获取参数:Jquery中getUrlParam()方法的使用

    我想要获取如下id 如下代码(传参要加问好!!) function getUrlParam(id) { var regExp = new RegExp('([?]|&)' + id+ '=([ ...

  7. a.py

    #!/usr/bin/python # -*- coding: UTF-8 -*- import os import sys import re import shutil import glob d ...

  8. Centos6.8上httpd配置腾讯云SSL证书

    (1)先按装mod_ssl yum -y install mod_ssl /etc/httpd/conf.d/下会有一个ssl.conf的文件,打开 a)检测本地证书配置是否正确 主要是看下证书及密钥 ...

  9. hibernate框架学习第四天:关联关系、外键、级联等

    一对多关联关系表 一方 多方(外键)实体类 一方:TeacherModel 添加多方的集合Set 多方StudentModel 添加一方的对象一方配置关系 name:一方模型中描述多方的集合对象名 c ...

  10. VS2013中编译openssl的步骤和使用设置

    一.VS2013中编译openssl的步骤 版本号:openssl-1.0.1e 1.下载 OpenSSL http://www.openssl.org/,并解压到d:\openssl-1.0.1e目 ...