其实用点权更简单,但这种做法是边权的

/*
依赖背包问题
dp[u][k]表示u结点往下共走k步的最大值
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct Edge{int w,to,nxt;}edge[];
int head[],tot,n,k,dp[][];
void init(){
memset(head,-,sizeof head);
tot=;
}
void addedge(int u,int v,int w){
edge[tot].w=w;edge[tot].to=v;edge[tot].nxt=head[u];head[u]=tot++;
}
void dfs(int u,int pre){
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v!=pre)dfs(v,u);
}
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v==pre)continue;
for(int j=k;j>=;j--)
for(int t=;t<j;t++)
dp[u][j]=max(dp[u][j],dp[u][t]+dp[v][j-t-]+edge[i].w);
}
//printf("%d %d %d %d\n",u,dp[u][0],dp[u][1],dp[u][k]);
}
int main(){
while(cin>>n>>k){
init();
for(int i=;i<n;i++){
int u,v,w;
cin>>u>>v>>w;
addedge(u,v,w);
addedge(v,u,w);
}
memset(dp,,sizeof dp);
dfs(,);
printf("%d\n",dp[][k]);
}
return ;
}

ural1018依赖背包-边权的更多相关文章

  1. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  2. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

  3. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  4. Gym - 101002D:Programming Team (01分数规划+树上依赖背包)

    题意:给定一棵大小为N的点权树(si,pi),现在让你选敲好K个点,需要满足如果如果u被选了,那么fa[u]一定被选,现在要求他们的平均值(pi之和/si之和)最大. 思路:均值最大,显然需要01分数 ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)

    题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...

  7. 依赖背包变形(经典)——poj1155

    这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...

  8. hdu 1561 The more, The Better (依赖背包 树形dp)

    题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...

  9. hdoj1010Starship Troopers (树dp,依赖背包)

    称号:hdoj1010Starship Troopers 题意:有一个军队n个人要占据m个城市,每一个城市有cap的驻扎兵力和val的珠宝,并且这m个城市的占率先后具有依赖关系,军队的每一个人能够打败 ...

随机推荐

  1. java 文档

    文档路径: https://docs.oracle.com/javase/10/docs/api/overview-summary.html

  2. 模拟post表单提交参数

    Content-Type: application/x-www-form-urlencoded;charset=utf-8

  3. sublime text 3 左侧目录树中文文件夹显示方框问题解决

    0 - 解决方法 打开Preferences->Settings 在弹出的Settings对话框中,加入"dpi_scale": 1.0 重新启动sublime text 3 ...

  4. MongoDB 学习手册 - 安装(windwos 环境)

  5. 高并发的socket的高性能设计【转】

    转自:https://blog.csdn.net/quincyfang/article/details/44654351 高性能数据传输系统的框架设计 1 引言 随着互联网和物联网的高速发展,使用网络 ...

  6. Windows PowerShell 入門(7)-関数編2

    この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...

  7. Yarn vs npm: 你需要知道的一切

    Yarn 是 Facebook, Google, Exponent 和 Tilde 开发的一款新的 JavaScript 包管理工具.就像我们可以从官方文档了解那样,它的目的是解决这些团队使用 npm ...

  8. ABP 框架从源码学习——abp框架启动和结束(1)

       1.abp框架的启动是从Global.asax文件的Application_Start启动的,当然代表Global的application必须从AbpWebApplication继承: publ ...

  9. RDLC系列之一 简介和入门

    一.简介 RDLC报表,通过Report Viewer Control来实现,制作微软RDLC报表由以下三部分构成:1.制作自己的DateSet集合(就是报表的数据集):2.制作自己的报表文件.rdl ...

  10. ubuntu16.04彻底删除nginx+php

    1.1 删除nginx,–purge包括配置文件 sudo apt-get --purge remove nginx 1.2 自动移除全部不使用的软件包 sudo apt-get autoremove ...