ural1018依赖背包-边权
其实用点权更简单,但这种做法是边权的
/*
依赖背包问题
dp[u][k]表示u结点往下共走k步的最大值
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct Edge{int w,to,nxt;}edge[];
int head[],tot,n,k,dp[][];
void init(){
memset(head,-,sizeof head);
tot=;
}
void addedge(int u,int v,int w){
edge[tot].w=w;edge[tot].to=v;edge[tot].nxt=head[u];head[u]=tot++;
}
void dfs(int u,int pre){
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v!=pre)dfs(v,u);
}
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(v==pre)continue;
for(int j=k;j>=;j--)
for(int t=;t<j;t++)
dp[u][j]=max(dp[u][j],dp[u][t]+dp[v][j-t-]+edge[i].w);
}
//printf("%d %d %d %d\n",u,dp[u][0],dp[u][1],dp[u][k]);
}
int main(){
while(cin>>n>>k){
init();
for(int i=;i<n;i++){
int u,v,w;
cin>>u>>v>>w;
addedge(u,v,w);
addedge(v,u,w);
}
memset(dp,,sizeof dp);
dfs(,);
printf("%d\n",dp[][k]);
}
return ;
}
ural1018依赖背包-边权的更多相关文章
- 依赖背包优化——ural1018,金明的预算方案
经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...
- 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)
The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...
- BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)
BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...
- Gym - 101002D:Programming Team (01分数规划+树上依赖背包)
题意:给定一棵大小为N的点权树(si,pi),现在让你选敲好K个点,需要满足如果如果u被选了,那么fa[u]一定被选,现在要求他们的平均值(pi之和/si之和)最大. 思路:均值最大,显然需要01分数 ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)
题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...
- 依赖背包变形(经典)——poj1155
这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...
- hdu 1561 The more, The Better (依赖背包 树形dp)
题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...
- hdoj1010Starship Troopers (树dp,依赖背包)
称号:hdoj1010Starship Troopers 题意:有一个军队n个人要占据m个城市,每一个城市有cap的驻扎兵力和val的珠宝,并且这m个城市的占率先后具有依赖关系,军队的每一个人能够打败 ...
随机推荐
- Linux命令详解一:基础命令新建、删除、拷贝~~~
此处跟大家分享一些Linux文件类的基本命令,应该可以满足日常基本操作了. 底部分享了一个链接,介绍的比较全面,也可以参照. 1.创建目录: 1)创建单级目录:mkdir soft: 2)创建层级目录 ...
- linux C遍历目录下文件
参考链接: http://blog.sina.com.cn/s/blog_626b7339010161tr.html
- tomcat源码之connector配置
连接 acceptor /** * Acceptor thread count. */protected int acceptorThreadCount = 0; 处理线程 private int m ...
- linux 权限管理 初识
- Microsoft SQL - 数据库管理系统
数据库管理系统(Server Management Studio) SQL Server Management Studio是一个数据库管理系统软件,数据库可以看成是一个个存储数据的文件,而Manag ...
- Javascript - Jquery - 事件
事件(Event) 文档事件 文档的载入事件 ready(fn) $(document).ready(function () { }); //或$(function () {}); //或$(docu ...
- ht学习流程
http://www.hightopo.com/blog/461.html数百个 HTML5 例子学习 HT 图形组件 掌握 HT 基础: 1.先入门手册 http://www.hightopo.co ...
- Spring Resource配置
1-classpath的设置: 2-Resource类型 3-ResourceLoader接口 加载resource的接口,只有一个方法getResource().所有ApplicationConte ...
- python 各种推导式玩法
推导式套路 除了最简单的列表推导式和生成器表达式,其实还有字典推导式.集合推导式等等. 下面是一个以列表推导式为例的推导式详细格式,同样适用于其他推导式. variable = [out_exp_re ...
- Java异常处理之try-with-resources
Oracle官方文档: http://docs.oracle.com/javase/7/docs/technotes/guides/language/try-with-resources.html 概 ...