CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢?

所有的初始化方法都定义在tensorflow/python/ops/init_ops.py

1、tf.constant_initializer()

也可以简写为tf.Constant()

初始化为常数,这个非常有用,通常偏置项就是用它初始化的。

由它衍生出的两个初始化方法:

a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()

b、tf.ones_initializer(), 也可以简写为tf.Ones()

例:在卷积层中,将偏置项b初始化为0,则有多种写法:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)

或者:

bias_initializer=tf.constant_initializer(0)

或者:

bias_initializer=tf.zeros_initializer()

或者:

bias_initializer=tf.Zeros()

例:如何将W初始化成拉普拉斯算子?

value = [1, 1, 1, 1, -8, 1, 1, 1,1]
init = tf.constant_initializer(value)
W= tf.get_variable('W', shape=[3, 3], initializer=init)

2、tf.truncated_normal_initializer()

或者简写为tf.TruncatedNormal()

生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。

它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。

例:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)

或者:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
bias_initializer=tf.zero_initializer(),
)

3、tf.random_normal_initializer()

可简写为 tf.RandomNormal()

生成标准正态分布的随机数,参数和truncated_normal_initializer一样。

4、random_uniform_initializer = RandomUniform()

可简写为tf.RandomUniform()

生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。

5、tf.uniform_unit_scaling_initializer()

可简写为tf.UniformUnitScaling()

和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)

max_val = math.sqrt(3 / input_size) * factor

这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]

它的分布区间为[ -max_val, max_val]

6、tf.variance_scaling_initializer()

可简写为tf.VarianceScaling()

参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)

scale: 缩放尺度(正浮点数)

mode:  "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。

distribution:分布类型,"normal"或“uniform"中的一个。

当 distribution="normal" 的时候,生成truncated normal   distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。

如果mode = "fan_in", n为输入单元的结点数;

如果mode = "fan_out",n为输出单元的结点数;

如果mode = "fan_avg",n为输入和输出单元结点数的平均值。

当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则

limit = sqrt(3 * scale / n)

7、tf.orthogonal_initializer()

简写为tf.Orthogonal()

生成正交矩阵的随机数。

当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。

8、tf.glorot_uniform_initializer()

也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。

假设均匀分布的区间是[-limit, limit],则

limit=sqrt(6 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

9、glorot_normal_initializer()

也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.

stddev = sqrt(2 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

tensorflow 1.0 学习:参数初始化(initializer)的更多相关文章

  1. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  2. tensorflow 1.0 学习:参数和特征的提取

    在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print(&q ...

  3. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

  4. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  5. tensorflow 1.0 学习:卷积层

    在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, ...

  6. tensorflow 2.0 学习(四)

    这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...

  7. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  8. tensorflow 1.0 学习:模型的保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  9. Tensorflow 2.0 学习资源

    我从换了新工作才开始学习使用Tensorflow,感觉实在太难用了,sess和graph对 新手很不友好,各种API混乱不堪,这些在tf2.0都有了重大改变,2.0大量使用keras的 api,初步使 ...

随机推荐

  1. ABP 依赖注入

    1.ABP自动注入 //IapplicationService注入方式暴露接 //ITransientDependency 不会暴露接口 ITransientDependency和ISingleton ...

  2. 防止用户重发发生ajax请求

    1.前端限制 点击提交后,将该元素禁用,等待请求结束后再次释放(解除禁用). 可以使用ajax中的 success 请求成功后的回调函数进行按钮释放. 2.防抖动 暴力连续点击按钮,可以通过闭包里的  ...

  3. 操作系统组成和工作原理以及cpu的工作原理

  4. windowsSevice程序和topshelf程序创建服务对比

    文章原地址:http://www.80iter.com/blog/1451523192435464 Topshelf 创建.net服务整理和安装步骤 windowsService和topshelf服务 ...

  5. Mac os查看链接过的ssh key

    https://shipengliang.com/software-exp/mac-os-如何管理ssh-key.html

  6. 直播流RTMP 知识

    分享直播相关知识点: http://blog.csdn.net/kingroc/article/details/50839994 #!/bin/bash# Order Finish Startup# ...

  7. c++中二级指针的使用场景

    二级指针的使用场景如下: 1.主要用来为指针变量分配内存空间: void GetMemory(char **p) { *p = ]; } 函数调用方式: char *str = NULL; GetMe ...

  8. phantomjs的安装和使用链接

    1.先下载phantomjs并解压2.将phantomjs的bin目录配置到环境变量中3.测试phantomjs,cmd下输入phantomjs进入 (按 Ctrl + c 组 合键退出和 phant ...

  9. Django关联数据库时报错TypeError: __init__() missing 1 required positional argument: 'on_delete'

    sgrade = models.ForeignKey("Grades",) 执行python manage.py makemigrations后出现TypeError: __ini ...

  10. unigui ShowModal、MessageDlg

    procedure Calback(Sender: TComponent; AResult: Integer);procedure TForm.Calback(Sender: TComponent; ...