POJ 2942Knights of the Round Table(tarjan求点双+二分图染色)
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 13954 | Accepted: 4673 |
Description
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Source
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
//#define getchar() (S == T && (T = (S = BB) + fread(BB, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
//char BB[1 << 15], *S = BB, *T = BB;
using namespace std;
const int MAXN=1e5+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int N,M;
int angry[][];
int dfn[MAXN],low[MAXN],tot=,point[MAXN],color[MAXN],in[MAXN],ans[MAXN];
stack<int>s;
void pre()
{
memset(angry,,sizeof(angry));
num=;
memset(head,-,sizeof(head));
memset(ans,,sizeof(ans));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
}
bool MakeColor(int now,int how)
{
color[now]=how;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!in[edge[i].v]) continue;
if(!color[edge[i].v]&&!MakeColor(edge[i].v,how^)) return ;
else if(color[edge[i].v]==color[now]) return ;
}
return ;
}
void tarjan(int now,int fa)
{
dfn[now]=low[now]=++tot;
s.push(now);
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!dfn[edge[i].v]&&edge[i].v!=fa)
{
tarjan(edge[i].v,now);
low[now]=min(low[now],low[edge[i].v]);
if(low[edge[i].v]>=dfn[now])
{
memset(in,,sizeof(in));//哪些在双联通分量里
memset(color,,sizeof(color));
int h=,cnt=;
do
{
h=s.top();s.pop();
in[h]=;
point[++cnt]=h;
}while(h!=edge[i].v);//warning
if(cnt<=) continue;//必须构成环
in[now]=;point[++cnt]=now;
if(MakeColor(now,)==)
for(int j=;j<=cnt;j++)
ans[point[j]]=;
}
}
if(edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]);
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
while(scanf("%d%d",&N,&M))
{
if(N==&&M==) break;
pre();
for(int i=;i<=M;i++)
{
int x=read(),y=read();
angry[x][y]=angry[y][x]=;
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(i!=j&&(!angry[i][j]))
AddEdge(i,j);
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i,);
int out=;
for(int i=;i<=N;i++)
if(!ans[i]) out++;
printf("%d\n",out);
}
return ;
}
POJ 2942Knights of the Round Table(tarjan求点双+二分图染色)的更多相关文章
- poj 2942--Knights of the Round Table (点的双连通分量)
做这题简直是一种折磨... 有n个骑士,骑士之间相互憎恨.给出骑士的相互憎恨的关系. 骑士要去开会,围成一圈坐,相互憎恨的骑士不能相邻.开会骑士的个数不能小于三个人.求有多少个骑士不能开会. 注意:会 ...
- KNIGHTS - Knights of the Round Table 圆桌骑士 点双 + 二分图判定
---题面--- 题解: 考场上只想到了找点双,,,,然后不知道怎么处理奇环的问题. 我们考虑对图取补集,这样两点之间连边就代表它们可以相邻, 那么一个点合法当且仅当有至少一个大小至少为3的奇环经过了 ...
- POJ 2942Knights of the Round Table(二分图判定+双连通分量)
题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...
- hdu 2460(tarjan求边双连通分量+LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...
- C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建
最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...
- [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- poj 2942 Knights of the Round Table - Tarjan
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- POJ 2942 Knights of the Round Table 黑白着色+点双连通分量
题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...
随机推荐
- JMH实践-代码性能测试工具
概述 JMH,即Java Microbenchmark Harness,是专门用于代码微基准测试的工具套件 JMH比较典型的应用场景有: 想准确的知道某个方法需要执行多长时间,以及执行时间和输入之间的 ...
- ubuntu中minicom安装和使用
想要对嵌入式开发板进行开发和操作,都需要进行文件传输或者是控制,这时基本都是需要通过串口线或者是网线进行连接的,在Windows下是使用超级终端通过串口对开发板进行操作的,而在Linux下,最后最常见 ...
- Kubernetes集群搭建之系统初始化配置篇
Kubernetes的几种部署方式 1. minikube Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernetes或日常开发的用户使用.不能用于生产环境 ...
- 设置python环境变量
原始环境变量 /> python Python |Anaconda (-bit)| (default, May , ::) [GCC (Red Hat -)] on linux Type &qu ...
- Anaconda+MINGW+theano+keras安装
前言:这几天算是被这东西困扰的十分难受,博客园和csdn各种逛,找教程,大家说法不一,很多方法也不一定适用,有些方法有待进一步完善.这里我借鉴了许多大神们的方法,以及自己的一些心得,希望对你们有一些帮 ...
- java各种集合的线程安全
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...
- Redux 实现过程的推演
这是一篇浅入浅出的 Redux 实现过程的推演笔记!正常来说应该是要从源码下手开始解析,这里是逆向推演,假如有需求是要这么一个东西,那么该如何从零开始实现? 通过该笔记,更多的是希望自己能够多熟悉从无 ...
- iOS逆向开发(4):注入目标函数 | fishhook | MobileSubstrate | MSHookFunction | iOSOpenDev
从获得APP的所有类声明,到锁定目标类与函数,现在是时候注入函数了. 所谓"注入函数",小程的意思是让APP执行到小程写的代码中,跟"钩子"的概念一致.小程把个 ...
- 在eclipse中安装properties插件PropertiesEditor及设置(附图),ASCII码转换成中文
在eclipse中安装properties插件PropertiesEditor及设置(附图),ASCII码转换成中文安装成功后ASCII还是不能转换成中文的,原因是设置里面没有把编码设置为utf8的, ...
- 【前端框架系列】浅谈当前基于bootstrap框架的几种主流前端框架
一 概述 当新开发一个项目或产品时,技术选型是一个不可缺少的环节,在软件架构中有着举足轻重的作用,可以这么说,技术选型的好坏直接影响项目或产品的成败优劣,因此,在进行软件架构时,一定要想好技术选型. ...