Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 13954   Accepted: 4673

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled. 

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, 'scanf' recommended to avoid TLE. 

Source

 
 
又是一道神题
首先把模型转换一下,问最多开除多少人,实际是最多能留下多少人
我们把原图的补图建出来
然后缩个双联通分量
一个人不被开除,当且仅当它所在的双联通分量为奇环
判断奇环的时候用二分图染色
 
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
//#define getchar() (S == T && (T = (S = BB) + fread(BB, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
//char BB[1 << 15], *S = BB, *T = BB;
using namespace std;
const int MAXN=1e5+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int N,M;
int angry[][];
int dfn[MAXN],low[MAXN],tot=,point[MAXN],color[MAXN],in[MAXN],ans[MAXN];
stack<int>s;
void pre()
{
memset(angry,,sizeof(angry));
num=;
memset(head,-,sizeof(head));
memset(ans,,sizeof(ans));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
}
bool MakeColor(int now,int how)
{
color[now]=how;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!in[edge[i].v]) continue;
if(!color[edge[i].v]&&!MakeColor(edge[i].v,how^)) return ;
else if(color[edge[i].v]==color[now]) return ;
}
return ;
}
void tarjan(int now,int fa)
{
dfn[now]=low[now]=++tot;
s.push(now);
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!dfn[edge[i].v]&&edge[i].v!=fa)
{
tarjan(edge[i].v,now);
low[now]=min(low[now],low[edge[i].v]);
if(low[edge[i].v]>=dfn[now])
{
memset(in,,sizeof(in));//哪些在双联通分量里
memset(color,,sizeof(color));
int h=,cnt=;
do
{
h=s.top();s.pop();
in[h]=;
point[++cnt]=h;
}while(h!=edge[i].v);//warning
if(cnt<=) continue;//必须构成环
in[now]=;point[++cnt]=now;
if(MakeColor(now,)==)
for(int j=;j<=cnt;j++)
ans[point[j]]=;
}
}
if(edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]);
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
while(scanf("%d%d",&N,&M))
{
if(N==&&M==) break;
pre();
for(int i=;i<=M;i++)
{
int x=read(),y=read();
angry[x][y]=angry[y][x]=;
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(i!=j&&(!angry[i][j]))
AddEdge(i,j);
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i,);
int out=;
for(int i=;i<=N;i++)
if(!ans[i]) out++;
printf("%d\n",out);
}
return ;
}

POJ 2942Knights of the Round Table(tarjan求点双+二分图染色)的更多相关文章

  1. poj 2942--Knights of the Round Table (点的双连通分量)

    做这题简直是一种折磨... 有n个骑士,骑士之间相互憎恨.给出骑士的相互憎恨的关系. 骑士要去开会,围成一圈坐,相互憎恨的骑士不能相邻.开会骑士的个数不能小于三个人.求有多少个骑士不能开会. 注意:会 ...

  2. KNIGHTS - Knights of the Round Table 圆桌骑士 点双 + 二分图判定

    ---题面--- 题解: 考场上只想到了找点双,,,,然后不知道怎么处理奇环的问题. 我们考虑对图取补集,这样两点之间连边就代表它们可以相邻, 那么一个点合法当且仅当有至少一个大小至少为3的奇环经过了 ...

  3. POJ 2942Knights of the Round Table(二分图判定+双连通分量)

    题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...

  4. hdu 2460(tarjan求边双连通分量+LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...

  5. C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建

    最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...

  6. [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)

    [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...

  7. POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug

    题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...

  8. poj 2942 Knights of the Round Table - Tarjan

    Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...

  9. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

随机推荐

  1. 怎么随时获取Spring的上下文ApplicaitonContext,和Spring管理的Bean

    BeanFactory接口 Interface BeanFactory getBean <T> T getBean(String name, Class<T> required ...

  2. 第54节:Java当中的IO流(中)

    Java当中的IO流(中) 删除目录 // 简书作者:达叔小生 import java.io.File; public class Demo{ public static void main(Stri ...

  3. pickle模块及其API

    模块:pickle 所包含API列表: pickle.dumps : 把任意对象序列化成一个bytes pickle.dump : 直接把对象序列化后写入一个file-like Object pick ...

  4. 请求被中止: 未能创建 SSL/TLS 安全通道

    出现“请求被中止: 未能创建 SSL/TLS 安全通道.”的问题. 在创建请求地址的前面加了这句代码就可以了 System.Net.ServicePointManager.SecurityProtoc ...

  5. MRO

    在Python3里面,有多继承的时候,往往会出现调用Super失败的情况.Python里存在一种多继承 Super的调用顺序(C3算法),保证每个类调用一次. 体现:类名.__mro__ 使用Supe ...

  6. 《JQuery技术内幕》读书笔记——自调用匿名函数剖析

    Javascript语言中的自调用匿名函数格式如下: (function(){ //do somethings })(); 它还有另外两种等价写法如下: //等价写法一 (function(){ // ...

  7. Docker概念学习系列之详谈Docker 的核心组件与概念(5)

    不多说,直接上干货!   见[博主]撰写的https://mp.weixin.qq.com/s/0omuSAjF5afJBZBxhbKTqQ 想要了解Docker,就必须了解Docker的五大核心概念 ...

  8. 不得不提的volatile及指令重排序(happen-before)

    微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...

  9. JsonBuilder初出茅庐

    互联网这股东风不久前刮到了甘凉国,国王老甘独具慧眼,想赶紧趁着东风未停大力发展移动互联网,因为他笃信布斯雷的理论:“站在风口上,猪都能飞起来”.无奈地方偏僻落后,国内无可用之才啊.老甘一筹莫展的低头凝 ...

  10. 解释代码((n & (n-1))== 0)的含义

    思路:初步查看很难一眼分析出表达式是什么含义,我们不妨举例分析一下,假设 n = 5,二进制表示为101,那么 n-1 = 4,二进制表示为100, 5 & 4 = 101 & 100 ...