吴恩达机器学习笔记 —— 7 Logistic回归
http://www.cnblogs.com/xing901022/p/9332529.html
本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何理解决策边界?如何解决多分类的问题?
更多内容参考 机器学习&深度学习
有的时候我们遇到的问题并不是线性的问题,而是分类的问题。比如判断邮件是否是垃圾邮件,信用卡交易是否正常,肿瘤是良性还是恶性的。他们有一个共同点就是Y只有两个值{0,1},0代表正类,比如肿瘤是良性的;1代表负类,比如肿瘤是恶性的。当然你想用1代表良性也可以,而且输出的值不仅仅局限为0和1两类,有可能还有多类,比如手写体识别是从0到9。

如果使用线性的方法来判断分类问题,就会出现图上的问题。我们需要人工的判断中间的分界点,这个很不容易判断;如果在很远的地方有样本点,那么中心点就会发生漂移,影响准确性。

如果我们想要结果总是在0到1之间,那么就可以使用sigmoid函数,它能保证数据在0-1之间。并且越趋近于无穷大,数据越趋近于1。
回到我们假设的问题上来,如果肿瘤是依赖于大小来判断良性恶性,如果超过0.7*平均值,就判断是恶性的,那么平均来算30%的是恶性的,70%是良性的,他们相加总会是100%。再来看看上面的sigmoid的图像,每个点都表示它属于1的概率是x,属于0的概率是1-x。这样一个分类的问题,就变成了曲线值得问题了。
如果想让y=1,即g(z)的值要大于0.5,那么z的值就需要大于0;相反,y=0,就是z的值小于0。因此整个分类问题,就变成了寻找决策边界的问题了。
那么如何确定逻辑回归的损失函数呢?如果使用均方误差,由于最终的值都是0和1,就会产生震荡,此时是无法进行求导的。

因此需要寻找一个方法,使得代价函数变成凸函数,从而易于求解。


如果把损失函数定义为上面的形式,当真实的值是1时,我们预测的值越靠近1,cost的值越小,误差越小。如果真实值是0,那么预测的值越靠近1,cost的值越大。完美的表达了损失的概念。而且,由于0和1的概念,可以把上面的公式合并成下面统一的写法。直接基于这个统一的写法,做梯度下降求解即可。

在求解最优化的问题时,不仅仅只有一种梯度下降Gradient descenet,还可以使用Conjugate gradient,BFGS,L-BFSGS。
多分类问题,可以理解为采用多个logistic分类器,进行分类。针对每个样本点进行一个预测,给出概率值,选择概率值最高的那个进行分类的标识。

吴恩达机器学习笔记 —— 7 Logistic回归的更多相关文章
- 吴恩达机器学习笔记14-逻辑回归(Logistic Regression)
在分类问题中,你要预测的变量
- 吴恩达机器学习笔记(二) —— Logistic回归
主要内容: 一.回归与分类 二.Logistic模型即sigmoid function 三.decision boundary 决策边界 四.cost function 代价函数 五.梯度下降 六.自 ...
- 吴恩达机器学习笔记(三) —— Regularization正则化
主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting ...
- 吴恩达机器学习笔记(四) —— BP神经网络
主要内容: 一.模型简介 二.一些变量所代表的含义 三.代价函数 四.Forward Propagation 五.Back Propagation 六.算法流程 待解决问题: 视频中通过指出:当特征变 ...
- 吴恩达机器学习笔记(九) —— 异常检测(Anomaly detection)
主要内容: 一.模型介绍 二.算法过程 三.算法性能评估及ε(threshold)的选择 四.Anomaly detection vs Supervised learning 五.Multivaria ...
- 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)
主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
随机推荐
- 【MySQL】常用监控指标及监控方法
对之前生产中使用过的MySQL数据库监控指标做个小结. 指标分类 指标名称 指标说明 性能类指标 QPS 数据库每秒处理的请求数量 TPS 数据库每秒处理的事务数量 并发数 数据库实例当前并行处理的 ...
- 深入浅出 Java 中的包装类
前阵子,我们分享了<Java中的基本数据类型转换>这篇文章,对许多粉丝还是有带来帮助的,今天讲一下 Java 包装类的的由来,及自动装箱.拆箱的概念和原理. 什么是包装类型 Java 设计 ...
- [P4886] 快递员
考虑在树上选个点rt作为根,并且快递中心就选这儿.计算出所有配送的代价(2*两段之和),设他们的最大值为Max.若此时存在下列情况时,可以判定Max已经为最优解. 1)存在代价为Max的配送(u,v) ...
- Git基本命令 -- 基本工作流程 + 文件相关操作
可以先找一个已经被git管理的项目, 我就使用这个项目吧: https://github.com/solenovex/ID3-Editor 基本工作流程 克隆以后呢, 进入该目录查看一下状态: 然后添 ...
- Navicat 连接Oracle的教程以及注意事项
今天使用Navicat 连接Oracle时晕倒了一些坑,特此记录一下! 楼主就是64位win10系统,安装的Navicat是64位的,刚开始配置32位的oci.配置后连接还是提示“Connot loa ...
- 如何用chrome注册版权登记系统
版权登记系统的网址: http://apply.ccopyright.com.cn/goadatadic/registergetList.do 打开网站,一股古朴的气息扑面而来,嗯,一看就是IE时代的 ...
- [工具向]__申请,下载,使用百度地图api
前言 api即应用程序接口,在我们的日常开发中,我们不仅可以在开源代码仓库(,github,码云)中获得很大的帮助,在日常开发中占重要地位的另一个东西就是api,我们可以使用众多的第三方编写的优秀的a ...
- [NewLife.XCode]高级查询(化繁为简、分页提升性能)
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netcore,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和 ...
- [机器学习]回归--Support Vector Regression(SVR)
来计算其损失. 而支持向量回归则认为只要f(x)与y偏离程度不要太大,既可以认为预测正确,不用计算损失,具体的,就是设置阈值α,只计算|f(x)−y|>α的数据点的loss,如下图所示,阴影部分 ...
- 前端XSS相关整理
前端安全方面,主要需要关注 XSS(跨站脚本攻击 Cross-site scripting) 和 CSRF(跨站请求伪造 Cross-site request forgery) 当然了,也不是说要忽略 ...