吴恩达机器学习笔记 —— 7 Logistic回归
http://www.cnblogs.com/xing901022/p/9332529.html
本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何理解决策边界?如何解决多分类的问题?
更多内容参考 机器学习&深度学习
有的时候我们遇到的问题并不是线性的问题,而是分类的问题。比如判断邮件是否是垃圾邮件,信用卡交易是否正常,肿瘤是良性还是恶性的。他们有一个共同点就是Y只有两个值{0,1},0代表正类,比如肿瘤是良性的;1代表负类,比如肿瘤是恶性的。当然你想用1代表良性也可以,而且输出的值不仅仅局限为0和1两类,有可能还有多类,比如手写体识别是从0到9。
如果使用线性的方法来判断分类问题,就会出现图上的问题。我们需要人工的判断中间的分界点,这个很不容易判断;如果在很远的地方有样本点,那么中心点就会发生漂移,影响准确性。
如果我们想要结果总是在0到1之间,那么就可以使用sigmoid函数,它能保证数据在0-1之间。并且越趋近于无穷大,数据越趋近于1。
回到我们假设的问题上来,如果肿瘤是依赖于大小来判断良性恶性,如果超过0.7*平均值,就判断是恶性的,那么平均来算30%的是恶性的,70%是良性的,他们相加总会是100%。再来看看上面的sigmoid的图像,每个点都表示它属于1的概率是x,属于0的概率是1-x。这样一个分类的问题,就变成了曲线值得问题了。
如果想让y=1,即g(z)的值要大于0.5,那么z的值就需要大于0;相反,y=0,就是z的值小于0。因此整个分类问题,就变成了寻找决策边界的问题了。
那么如何确定逻辑回归的损失函数呢?如果使用均方误差,由于最终的值都是0和1,就会产生震荡,此时是无法进行求导的。
因此需要寻找一个方法,使得代价函数变成凸函数,从而易于求解。
如果把损失函数定义为上面的形式,当真实的值是1时,我们预测的值越靠近1,cost的值越小,误差越小。如果真实值是0,那么预测的值越靠近1,cost的值越大。完美的表达了损失的概念。而且,由于0和1的概念,可以把上面的公式合并成下面统一的写法。直接基于这个统一的写法,做梯度下降求解即可。
在求解最优化的问题时,不仅仅只有一种梯度下降Gradient descenet,还可以使用Conjugate gradient,BFGS,L-BFSGS。
多分类问题,可以理解为采用多个logistic分类器,进行分类。针对每个样本点进行一个预测,给出概率值,选择概率值最高的那个进行分类的标识。
吴恩达机器学习笔记 —— 7 Logistic回归的更多相关文章
- 吴恩达机器学习笔记14-逻辑回归(Logistic Regression)
在分类问题中,你要预测的变量
- 吴恩达机器学习笔记(二) —— Logistic回归
主要内容: 一.回归与分类 二.Logistic模型即sigmoid function 三.decision boundary 决策边界 四.cost function 代价函数 五.梯度下降 六.自 ...
- 吴恩达机器学习笔记(三) —— Regularization正则化
主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting ...
- 吴恩达机器学习笔记(四) —— BP神经网络
主要内容: 一.模型简介 二.一些变量所代表的含义 三.代价函数 四.Forward Propagation 五.Back Propagation 六.算法流程 待解决问题: 视频中通过指出:当特征变 ...
- 吴恩达机器学习笔记(九) —— 异常检测(Anomaly detection)
主要内容: 一.模型介绍 二.算法过程 三.算法性能评估及ε(threshold)的选择 四.Anomaly detection vs Supervised learning 五.Multivaria ...
- 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)
主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
随机推荐
- 编译u-boot问题总结
问题一: /usr/local/JreTool/opt/FriendlyARM/toolschain/4.4.3/bin/.arm-none-linux-gnueabi-ld: warning: cr ...
- 去掉word页眉上横线的技巧
页眉下面会出现一条横线 双击页眉进入页眉页脚编辑状态.选定页眉内容.点击菜单栏[开始]-[清除一切格式]图标. 效果图: 方法二 进入页眉编辑状态,同时自动切换到了“设计”选项卡.同时注意观察,在页眉 ...
- pylot测试工具环境搭建
1.下载Pylot:www.pylot.org/ 2. 安装Python 2.5 + (必须) 3. 安装wxPython(可选 - 用于GUI模式) 4. 安装numpy的(可选 - 用于报告以图表 ...
- Docker学习之3——容器
容器(Container) 容器介绍: docker是通过容器来运行业务的,就像运行一个kvm虚拟机是一样的.容器其实就是从镜像创建的一个实例. 我们可以对容器进行增删改查,容器之间也是相互隔离的.和 ...
- RocketMQ事务消息实现分析
这周RocketMQ发布了4.3.0版本,New Feature中最受关注的一点就是支持了事务消息: 今天花了点时间看了下具体的实现内容,下面是简单的总结. RocketMQ事务消息概要 通过冯嘉发布 ...
- 用dos命令导出一个文件夹里面所有文件的名字(装逼利器)
首先,当然是在相关的文件夹打开dos命令窗口. 然后,输入如下命令:dir/b >a.txt 如果你非常了解dos命令,那么你一定会觉得这个东西简单到爆,而且我的理解和猜想都有些无知. 但如果你 ...
- 一文带你看懂cookie,面试前端不用愁
本文由云+社区发表 在前端面试中,有一个必问的问题:请你谈谈cookie和localStorage有什么区别啊? localStorage是H5中的一种浏览器本地存储方式,而实际上,cookie本身并 ...
- 【Vue.js】vue项目目录作用
1. build文件夹:打包配置的文件夹 1.1 webpack.base.conf.js :打包的核心配置 1.2 build.js:构建生产版本,项目开发完成之后,通过build.js打包(加 ...
- Perl的变量
变量 在perl中,普通变量被称为"标量变量"(scalar),标量是指单个值的意思.还有非标量的数据,如数组.列表.hash等.标量变量和这种非标量的关系,类似于英语里面的单数和 ...
- 南大算法设计与分析课程复习笔记(2)L2 - Asymptotics
一.几种比较复杂度的符号 数据结构有描述,相关严格数学定义也不想说了,就这么过了吧. 二.最大子数组的几种解决方法 从最复杂的暴力解法过渡到最简单的动态规划 解析和代码见这里:http://www.c ...