import numpy as np

data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
row = 0
for line in data:
row += 1
print(row)
print(data.size)

import numpy as np

data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(data[0,3])
print(data[0,4])

import numpy as np

data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(data)
col1 = []
for row in data:
print(row)
col1.append(row[0,1]) print(col1)
print(np.sum(col1))
print(np.mean(col1))
print(np.std(col1))
print(np.var(col1))

import pylab
import numpy as np
import scipy.stats as stats data = np.mat([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]]) col1 = []
for row in data:
col1.append(row[0,1]) stats.probplot(col1,plot=pylab)
pylab.show()

import pandas as pd
import matplotlib.pyplot as plot rocksVMines = pd.DataFrame([[1,200,105,3,False],
[2,165,80,2,False],
[3,184.5,120,2,False],
[4,116,70.8,1,False],
[5,270,150,4,True]])
print(rocksVMines)
dataRow1 = rocksVMines.iloc[1,0:3]
dataRow2 = rocksVMines.iloc[2,0:3]
print(type(dataRow1))
print(dataRow1)
print(dataRow2)
plot.scatter(dataRow1, dataRow2)
plot.xlabel("Attribute1")
plot.ylabel("Attribute2")
plot.show() dataRow3 = rocksVMines.iloc[3,0:3]
plot.scatter(dataRow2, dataRow3)
plot.xlabel("Attribute2")
plot.ylabel("Attribute3")
plot.show()

import numpy as np
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
print(np.shape(dataFile))
dataRow1 = dataFile.iloc[100,1:300]
dataRow2 = dataFile.iloc[101,1:300]
plot.scatter(dataRow1, dataRow2)
plot.xlabel("Attribute1")
plot.ylabel("Attribute2")
plot.show()

import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") target = []
for i in range(200):
if dataFile.iat[i,10] >= 7:
target.append(1.0)
else:
target.append(0.0) dataRow = dataFile.iloc[0:200,10]
plot.scatter(dataRow, target)
plot.xlabel("Attribute")
plot.ylabel("Target")
plot.show()

import random as rd
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") target = []
for i in range(200):
if dataFile.iat[i,10] >= 7:
target.append(1.0 + rd.uniform(-0.3, 0.3))
else:
target.append(0.0 + rd.uniform(-0.3, 0.3))
dataRow = dataFile.iloc[0:200,10]
plot.scatter(dataRow, target, alpha=0.5, s=100)
plot.xlabel("Attribute")
plot.ylabel("Target")
plot.show()

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") print(dataFile.head())
print(dataFile.tail()) summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,10:16].values
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

吴裕雄 python深度学习与实践(5)的更多相关文章

  1. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  2. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  3. 吴裕雄 python深度学习与实践(16)

    import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...

  4. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  5. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  6. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  7. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  8. 吴裕雄 python深度学习与实践(11)

    import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

  10. 吴裕雄 python深度学习与实践(9)

    import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...

随机推荐

  1. windows模拟linux部分功能

    --------------------------------------------分割线----------------------------------------------- 系统 wi ...

  2. RecyclerView拖拽排序;

    效果就是这样,RecyclerView列表可拖拽排序,可删除,可添加: RecyclerView给我们提供了一个手势器: ItemTouchHelper helper = new ItemTouchH ...

  3. 【CF1132F】Clear the String (DP)

    /* 区间dp题目, 考虑当前区间l,r 是可以枚举最后一次拿的分界点来考虑最右边节点是不是具有贡献 */ #include<cstdio> #include<algorithm&g ...

  4. Debug版本正常运行,Release版本编译通过但运行崩溃

    解决这个问题之前,第一个想的是Debug版本和Release版本有什么区别 Debug版: 经过编译器编译出的项目.exe文件大,而且生成的二进制命令没有经过编译器的优化.项目中包含着丰富的调试信息, ...

  5. Nodejs总结(一)

    Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台,事件驱动I/O服务端JavaScript环境,基于Google的V8引擎,V8引擎执行Javascript的速度非常 ...

  6. 登录iOS Dev Center

    打开网站iOS Dev Center使用苹果开发者账号登录iOS Dev Center:登录成功后在页面右侧选择“Certificates, Identifiers & Profiles”:在 ...

  7. poi 导入Excel解析 2003 2007

    Workbook wb = WorkbookFactory.create(new FileInputStream(file)); Sheet sheet = wb.getSheetAt(0);// 第 ...

  8. uva-10714-贪心

    题意:有一条杆,长度为L,上面很几只蚂蚁,蚂蚁的朝向未知,爬速1cm/s,在爬行过程中,蚂蚁相撞了就往反方向爬,问,杆上没有蚂蚁至少要多久,至多要多久 解题思路: 蚂蚁1和蚂蚁2相撞,我们只要交换一下 ...

  9. Weblogic环境(JSP)文件下载问题(下载的文件与原文件大小不一致问题)

    最近发现一个问题有个download.jsp文件下载jsp在Tomcat下正常,在Weblogic下不太正常! Weblogic下载的文件比原文件大两个字节,查看文件像是文件内容最后多了空行 检查do ...

  10. Flex Iris效果放大或缩小组件演示

    Iris效果通过扩展或收缩集中在目标上的矩形遮罩为效果目标设置动画.该效果可以从目标的中心放大遮罩来显示目标,也可以向中心收缩遮罩来隐藏目标.演示: 源码如下: <?xml version=&q ...