http://www.lydsy.com/JudgeOnline/problem.php?id=2337

概率不能异或

但根据期望的线性,可以计算出每一位为1的概率,再累积他们的期望

枚举每一位i,现在要计算从1出发第i位异或和为1的概率

令f[u]表示从点u出发,第i为为1的概率

d[u]表示u的度数

枚举与u相连的v

若边权的第i位为1,那么v的第i位为0,f[u]+=(1-f[v])/d[u]

若边权的第i位为0,那么v的第i位为1,f[u]+=f[v]/d[u]

还有一个f[n]=0

将这n个式子,f[i]看做未知数,1/d[i]看做系数

把f[i]都移到左边,1/d 都移到右边

得到n个方程,高斯消元解出来

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 101
#define M 10001 const double eps=1e-; int n; int d[N];
int to[M<<],nxt[M<<],front[N],val[M<<],tot; double a[N][N]; int bit[]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
} void gauss()
{
int r;
double f;
for(int i=;i<n;++i)
{
r=i;
for(int j=i+;j<n;++j)
if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) swap(a[r],a[i]);
for(int k=i+;k<n;++k)
{
f=a[k][i]/a[i][i];
for(int j=i;j<=n;++j) a[k][j]-=f*a[i][j];
}
}
for(int i=n-;i>=;--i)
{
for(int j=i+;j<n;++j) a[i][n]-=a[j][n]*a[i][j];
a[i][n]/=a[i][i];
}
} int main()
{
int m;
read(n); read(m);
int x,y,w;
while(m--)
{
read(x); read(y); read(w);
add(x,y,w),d[y]++;
if(x!=y) add(y,x,w),d[x]++;
}
bit[]=;
for(int i=;i<;++i) bit[i]=bit[i-]<<;
double ans=;
for(int i=;i<;++i)
{
memset(a,,sizeof(a));
for(int j=;j<n;++j)
{
a[j-][j-]=;
for(int k=front[j];k;k=nxt[k])
if(val[k]&bit[i])
{
a[j-][to[k]-]+=1.0/d[j];
a[j-][n]+=1.0/d[j];
}
else a[j-][to[k]-]-=1.0/d[j];
}
a[n-][n-]=;
gauss();
ans+=a[][n]*bit[i];
}
printf("%.3lf",ans);
}

bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径的更多相关文章

  1. bzoj千题计划248:bzoj3697: 采药人的路径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3697 点分治 路径0改为路径-1 g[i][0/1] 和 f[i][0/1]分别表示当前子树 和 已 ...

  2. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  3. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  4. bzoj千题计划222:bzoj2329: [HNOI2011]括号修复(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2329 需要改变的括号序列一定长这样 :)))((( 最少改变次数= 多余的‘)’/2 [上取整] + ...

  5. bzoj千题计划194:bzoj2115: [Wc2011] Xor

    http://www.lydsy.com/JudgeOnline/problem.php?id=2115 边和点可以重复经过,那最后的路径一定是从1到n的一条路径加上许多环 dfs出任意一条路径的异或 ...

  6. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  7. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  8. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

  9. bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...

随机推荐

  1. 架构师修炼 III - 掌握设计原则

    关于软件的设计原则有很多,对于设计原则的掌握.理解.实践及升华是架构师的一项极为之必要的修炼. 记得在12年前第一次阅读<敏捷开发>时,五大基本设计原则就深深地植入到我的脑海中一直影响至今 ...

  2. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

  3. .NET Core 开发之旅 (1. .NET Core R2安装教程及Hello示例)

    前言 前几天.NET Core发布了.NET Core 1.0.1 R2 预览版,之前想着有时间尝试下.NET Core.由于各种原因,就没有初试.刚好,前几天看到.NET Core发布新版本了,决定 ...

  4. centos7 RabbitMQ部署

    一.RabbitMQ简单介绍在日常工作环境中,你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务 ...

  5. Scrapy的日志等级和请求传参

    日志等级 日志信息:   使用命令:scrapy crawl 爬虫文件 运行程序时,在终端输出的就是日志信息: 日志信息的种类: ERROR:一般错误: WARNING:警告: INFO:一般的信息: ...

  6. Python包下载超时问题解决

    pip下载模块慢解决办法 由于pip安装默认的访问地址为 http://pypi.python.org/simple/经常会有网络不稳定和速度慢的现象,出现timeout报错,因此可以改为访问国内的地 ...

  7. Istio 流量治理功能原理与实战

    一.负载均衡算法原理与实战 负载均衡算法(load balancing algorithm),定义了几种基本的流量分发方式,在Istio中共有4种标准负载均衡算法. •Round_Robin: 轮询算 ...

  8. 专业实训题目需求分析(3D推箱子)

    业务需求:    游戏提供主菜单让玩家进行游戏设置.帮助说明,推箱子的小人可以前后左右转动,箱子可以被上下左右的推动,要有关卡设置,障碍物设置,游戏提供背景音乐的功能,要实现3D效果. 面向的用户类型 ...

  9. 第一章:帝国的余晖 AT&T公司

    启示:自己的想法,有好的技术比什么都重要,一定要注意的是技术,不要贪小便宜,明白自己最先关心的的哪个事情. 书中内容:没有人能活两百岁,也没有公司能辉煌两百年,这就是规律,很难超越.

  10. 关于vs2013进行单元测试

    安装vs的过程就不多说了,做为一个学计算机的学生十基本技能. 第一步建立新工程.使用c#语言, 第二步,建立一个类.输入要测试的代码 第三步 建立一个类 第四步  运行测试