bzoj千题计划267:bzoj3129: [Sdoi2013]方程
http://www.lydsy.com/JudgeOnline/problem.php?id=3129
如果没有Ai的限制,就是隔板法,C(m-1,n-1)
>=Ai 的限制:m减去Ai
<=Ai 的限制:容斥原理,总数- 至少有一个数>Ai + 至少有两个数>Ai - ……
计算组合数取模,模数虽然很大也不是质数,但是质因数分解后 最大的才 10201,所以用扩展卢卡斯即可
注意在用扩展卢卡斯计算 阶乘的时候,要预处理 不包含当前质因子的阶乘,否则会TLE 3个点
#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; LL p; int up[],down[]; int num;
int PI[],PK[]; LL fac[]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void pre()
{
LL t=p;
for(LL i=;i*i<=p;++i)
if(!(t%i))
{
PI[++num]=i;
PK[num]=;
while(!(t%i)) t/=i,PK[num]*=i;
}
if(t>)
{
PI[++num]=t;
PK[num]=t;
}
} LL Pow(LL a,LL b,LL mod)
{
LL res=;
for(;b;b>>=,a=a*a%mod)
if(b&) res=res*a%mod;
return res;
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) { x=; y=; return; }
exgcd(b,a%b,y,x); y-=a/b*x;
} LL get_inv(LL a,LL b)
{
LL x,y;
exgcd(a,b,x,y);
x=(x%b+b)%b;
return x;
} LL get_fac(int n,LL pk,LL pi)
{
if(!n) return ;
LL ans=;
if(n/pk) ans=Pow(fac[pk],n/pk,pk);
ans=ans*fac[n%pk]%pk;
return ans*get_fac(n/pi,pk,pi)%pk;
} LL exlucas(int n,int m,LL pk,LL pi)
{
fac[]=;
for(int i=;i<=pk;++i)
{
fac[i]=fac[i-];
if(i%pi) fac[i]=fac[i]*i%pk;
}
LL fn=get_fac(n,pk,pi);
LL fm=get_fac(m,pk,pi);
LL fnm=get_fac(n-m,pk,pi);
LL k=;
for(int i=n;i;i/=pi) k+=i/pi;
for(int i=m;i;i/=pi) k-=i/pi;
for(int i=n-m;i;i/=pi) k-=i/pi;
LL ans=fn*get_inv(fm,pk)%pk*get_inv(fnm,pk)%pk*Pow(pi,k,pk)%pk;
return ans*(p/pk)%p*get_inv(p/pk,pk)%p;
} LL get_C(int n,int m)
{
if(n<m) return ;
LL ans=;
LL pk;
for(int i=;i<=num;++i)
ans=(ans+exlucas(n,m,PK[i],PI[i]))%p;
return ans;
} int main()
{
freopen("equation.in","r",stdin);
freopen("equation.out","w",stdout);
int T;
read(T); read(p);
pre();
int n,n1,n2,m;
int mm,t;
LL ans=;
while(T--)
{
read(n); read(n1); read(n2); read(m);
for(int i=;i<=n1;++i) read(up[i]);
for(int i=;i<=n2;++i) read(down[i]);
for(int i=;i<=n2;++i) m-=down[i]-;
ans=;
for(int i=;i<(<<n1);++i)
{
mm=m;
t=;
for(int j=;j<=n1;++j)
if(i&(<<j-)) mm-=up[j],++t;
t=(t&) ? - : ;
ans=(ans+t*get_C(mm-,n-)+p)%p;
}
cout<<ans<<'\n';
}
}
3129: [Sdoi2013]方程
Time Limit: 30 Sec Memory Limit: 256 MB
Submit: 646 Solved: 375
[Submit][Status][Discuss]
Description
给定方程
X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。
Input
输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
对于每组数据,第一行四个非负整数n,n1,n2,m。
第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。
Output
共T行,每行一个正整数表示取模后的答案。
Sample Input
3 1 1 6
3 3
3 0 0 5
3 1 1 3
3 3
Sample Output
6
0
【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)
HINT
n < = 10^9 , n1 < = 8 , n2 < = 8 , m < = 10^9 ,p<=437367875
对于l00%的测试数据: T < = 5,1 < = A1..n1_n2 < = m,n1+n2 < = n
bzoj千题计划267:bzoj3129: [Sdoi2013]方程的更多相关文章
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划134:bzoj3124: [Sdoi2013]直径
http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- bzoj千题计划268:bzoj3131: [Sdoi2013]淘金
http://www.lydsy.com/JudgeOnline/problem.php?id=3131 如果已知 s[i]=j 表示有j个<=n数的数码乘积=i 那么就会有 s[a1]*s[a ...
- bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...
- bzoj千题计划258:bzoj3123: [Sdoi2013]森林
http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
随机推荐
- 百度地图API的网页使用
请看图示(以及参考官方文档): 图片尺寸:1710x822
- Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)
参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...
- FUNMVP:5G技术对块链信任体系建设的影响
01 区块链现阶段应用在于概念证明 12月10日,工信部向三大运营商正式发放了5G系统实验频率运用允许,这让区块链从业者开端思索5G技术与区块链分别的可能性.在互联网的基础上依据区块链的特性完成价值的 ...
- cloudflare 加https、加SSL(加CF处理)实操流程
建站过程中,少不了SSL证书等cf添加操作,cf,即cloudflare的简写 首先,点击如图“Add site”,弹出输入框后,填写已在如阿里云.goDaddy.freedom等域名平台购买的域名: ...
- Intellij IDEA 文件修改提示星号
https://www.cnblogs.com/zheting/p/7594073.html
- Linux第五章笔记
5.1 与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层. 主要作用有: 为用户空间提供了一种硬件的抽象接口 系统调用保证了系统的稳定和安全 每个进程都需要运行在虚拟机内 5.2 AP ...
- vue如何触发某个元素的单击事件?
<a class="link" @click.native="test">1111</a> <a class="link ...
- Tomcat下bootstrap启动分析
"C:\Program Files\Java\jdk1.7.0\bin\javaw.exe" -agentlib:jdwp=transport=dt_socket,suspend= ...
- Cloudstack 的搭建
Note: 关闭了NFS Storage 的防火墙 service iptables stop 1. 新创建的Linux没有获取IP; vi /etc/sysconfig/network-script ...
- information_schema系列十一
1: INNODB_CMP 和INNODB_CMP_RESET 这两个表存储的是关于压缩INNODB信息表的时候的相关信息, Column name Description PAGE_SIZE Com ...