bzoj千题计划267:bzoj3129: [Sdoi2013]方程
http://www.lydsy.com/JudgeOnline/problem.php?id=3129
如果没有Ai的限制,就是隔板法,C(m-1,n-1)
>=Ai 的限制:m减去Ai
<=Ai 的限制:容斥原理,总数- 至少有一个数>Ai + 至少有两个数>Ai - ……
计算组合数取模,模数虽然很大也不是质数,但是质因数分解后 最大的才 10201,所以用扩展卢卡斯即可
注意在用扩展卢卡斯计算 阶乘的时候,要预处理 不包含当前质因子的阶乘,否则会TLE 3个点
#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; LL p; int up[],down[]; int num;
int PI[],PK[]; LL fac[]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void pre()
{
LL t=p;
for(LL i=;i*i<=p;++i)
if(!(t%i))
{
PI[++num]=i;
PK[num]=;
while(!(t%i)) t/=i,PK[num]*=i;
}
if(t>)
{
PI[++num]=t;
PK[num]=t;
}
} LL Pow(LL a,LL b,LL mod)
{
LL res=;
for(;b;b>>=,a=a*a%mod)
if(b&) res=res*a%mod;
return res;
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) { x=; y=; return; }
exgcd(b,a%b,y,x); y-=a/b*x;
} LL get_inv(LL a,LL b)
{
LL x,y;
exgcd(a,b,x,y);
x=(x%b+b)%b;
return x;
} LL get_fac(int n,LL pk,LL pi)
{
if(!n) return ;
LL ans=;
if(n/pk) ans=Pow(fac[pk],n/pk,pk);
ans=ans*fac[n%pk]%pk;
return ans*get_fac(n/pi,pk,pi)%pk;
} LL exlucas(int n,int m,LL pk,LL pi)
{
fac[]=;
for(int i=;i<=pk;++i)
{
fac[i]=fac[i-];
if(i%pi) fac[i]=fac[i]*i%pk;
}
LL fn=get_fac(n,pk,pi);
LL fm=get_fac(m,pk,pi);
LL fnm=get_fac(n-m,pk,pi);
LL k=;
for(int i=n;i;i/=pi) k+=i/pi;
for(int i=m;i;i/=pi) k-=i/pi;
for(int i=n-m;i;i/=pi) k-=i/pi;
LL ans=fn*get_inv(fm,pk)%pk*get_inv(fnm,pk)%pk*Pow(pi,k,pk)%pk;
return ans*(p/pk)%p*get_inv(p/pk,pk)%p;
} LL get_C(int n,int m)
{
if(n<m) return ;
LL ans=;
LL pk;
for(int i=;i<=num;++i)
ans=(ans+exlucas(n,m,PK[i],PI[i]))%p;
return ans;
} int main()
{
freopen("equation.in","r",stdin);
freopen("equation.out","w",stdout);
int T;
read(T); read(p);
pre();
int n,n1,n2,m;
int mm,t;
LL ans=;
while(T--)
{
read(n); read(n1); read(n2); read(m);
for(int i=;i<=n1;++i) read(up[i]);
for(int i=;i<=n2;++i) read(down[i]);
for(int i=;i<=n2;++i) m-=down[i]-;
ans=;
for(int i=;i<(<<n1);++i)
{
mm=m;
t=;
for(int j=;j<=n1;++j)
if(i&(<<j-)) mm-=up[j],++t;
t=(t&) ? - : ;
ans=(ans+t*get_C(mm-,n-)+p)%p;
}
cout<<ans<<'\n';
}
}
3129: [Sdoi2013]方程
Time Limit: 30 Sec Memory Limit: 256 MB
Submit: 646 Solved: 375
[Submit][Status][Discuss]
Description
给定方程
X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。
Input
输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
对于每组数据,第一行四个非负整数n,n1,n2,m。
第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。
Output
共T行,每行一个正整数表示取模后的答案。
Sample Input
3 1 1 6
3 3
3 0 0 5
3 1 1 3
3 3
Sample Output
6
0
【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)
HINT
n < = 10^9 , n1 < = 8 , n2 < = 8 , m < = 10^9 ,p<=437367875
对于l00%的测试数据: T < = 5,1 < = A1..n1_n2 < = m,n1+n2 < = n
bzoj千题计划267:bzoj3129: [Sdoi2013]方程的更多相关文章
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划134:bzoj3124: [Sdoi2013]直径
http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- bzoj千题计划268:bzoj3131: [Sdoi2013]淘金
http://www.lydsy.com/JudgeOnline/problem.php?id=3131 如果已知 s[i]=j 表示有j个<=n数的数码乘积=i 那么就会有 s[a1]*s[a ...
- bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...
- bzoj千题计划258:bzoj3123: [Sdoi2013]森林
http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
随机推荐
- Win环境 Android Studio使用Git 教程 ( 生成SSH key )
Github和码云都提供SSH协议,即用户可以用公钥认证方式连接到码云的SSH服务器.这就需要生成并部署SSH Key.下面就是我生成SSH Key的步骤,希望有所帮助: Git生成SSH key 在 ...
- unity2D背景移动补偿从而获得3d错觉效果
2d平台跳跃游戏当相机移动的时候背景跟随进行微调移动,从而使得玩家获得3d的错觉 using System.Collections;using System.Collections.Generic;u ...
- Linux_01
要安装centos系统,就必须得有centos系统软件安装程序,可以通过浏览器访问centos官网http://www.centos.org,然后找到Downloads - > mirror ...
- ini_set的用法介绍
https://www.cnblogs.com/xieqian111/p/5367732.html
- c# dataGridView 表头格式设置不管用
解决办法: EnableHeaderVisualStyles设为false
- 冲刺Two之站立会议3
今天继续昨天的工作,对主界面进行设计优化,并成功将各个按钮和对应的功能模块连接了起来.并对服务器部分进行了部分改进,包括登录界面的美观性和服务器数据库部分的处理.
- 03-java学习-基本数据类型-运算符-键盘接收用户输入
java的八大基本数据类型: 类型转换的基本原则: java整数的默认类型是int,小数的默认类型是double 运算符: 算术运算符.连接.赋值.关系.逻辑.三目运算符等…… 键盘接收用户输入: j ...
- 英语学习APP
第一部分 调研, 评测 下载并使用,描述最简单直观的个人第一次上手体验. 界面高大上,看起来很美观,是个不错的英语学习软件.我很喜欢. 2.按照<构建之法>13.1节描述的 bug 定义, ...
- Threadlocal 传递参数(百度二面)
去百度面试,二面的时候 面试官问 如果我想跟踪一个请求,从接收请求,处理到返回的整个流程,有没有好的办法,后来面试官说了 Threadlocal 可以做到传递参数. 这是ThreadLocal的一个功 ...
- Python 零基础 快速入门 趣味教程 (咪博士 海龟绘图 turtle) 0. 准备工作
一.关于 Python Python 是全球使用人数增长最快的编程语言!它易于入门.功能强大,从 Web 后端 到 数据分析.人工智能,到处都能看到 Python 的身影. Python 有两个主要的 ...