前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。

关于基类FractalEquation的定义及相关软件见:混沌与分形

(1)逻辑斯蒂映射系统

// 逻辑斯蒂映射系统
class LogisticMap : public FractalEquation
{
public:
LogisticMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = 0.0f;
m_ParamB = 4.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*outY*(-outY);
}
outY *= ; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

调节下参数后的图形:

(2)正弦映射系统

// 正弦映射系统
class SinMap : public FractalEquation
{
public:
SinMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -*PI;
m_ParamB = *PI; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*sinf(outY);
} outY *= 0.5f; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

(3)曼德勃罗映射系统

// 曼德勃罗映射系统
class MandelbrotMap : public FractalEquation
{
public:
MandelbrotMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -2.0f;
m_ParamB = 0.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = outY*outY + k;
} outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

最后发下被我同事当成MM的逻辑斯蒂分岔图像:

之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型

混沌分形之逻辑斯蒂(Logistic)映射系统的更多相关文章

  1. 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)

    原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...

  2. 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)

    一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...

  3. python机器学习实现逻辑斯蒂回归

    逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...

  4. 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归

    一.感知机     详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 ...

  5. spark机器学习从0到1逻辑斯蒂回归之(四)

      逻辑斯蒂回归 一.概念 逻辑斯蒂回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型.logistic回归的因变量可以是二分类的,也可以是多分类的.logis ...

  6. [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...

  7. 【项目实战】pytorch实现逻辑斯蒂回归

    视频指导:https://www.bilibili.com/video/BV1Y7411d7Ys?p=6 一些数据集 在pytorch框架下,里面面有配套的数据集,pytorch里面有一个torchv ...

  8. 逻辑斯蒂(logistic)回归深入理解、阐述与实现

    第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的 ...

  9. 逻辑斯蒂回归VS决策树VS随机森林

    LR 与SVM 不同 1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率 2.LR其实同样可以使用kernel,但是LR没有support vector在计 ...

随机推荐

  1. 006.LVM快照

    一 快照介绍 快照就是将当时的系统信息记录下来,就好像照相一样,未来若有任何资料变动了,则原始资料会被移动到快照区,没有被改动的区域则由快照区与档案系统共享. 二 快照原理 当建立快照区时,LVM会预 ...

  2. 运行程序,解读this指向---case6

    function Parent() { this.a = 1; this.b = [1, 2, this.a]; this.c = { ckey: 5 }; this.show = function ...

  3. DIM-00014: Cannot open the Windows NT Service Control Manager.

    创建Oracle数据库时出错: OPW-00001: Unable to open password-file DIM-00014: Cannot open the Windows NT Servic ...

  4. Bzoj5209[Tjoi2012]防御:姿势题

    首先这题现在在BZOJ上是没数据的,你可以选择python2B获得AC,也可以去洛谷上交.选择第一个选项的现在可以不用看了...... 关于这题的题意,击破的一次攻击即使溢出也不双倍,否则你过不了样例 ...

  5. codeforces 596E Wilbur and Strings

    题意:一个矩阵上面有0~9的数字,可以从任意一个格子出发,每次根据格子上的数字会前进到另一个格子(或原地不动),现在给出q个数位串,问是否有走法可以取出这个串(走到格子上的时候可以不取). 思路:发现 ...

  6. 使用Google-Colab训练PyTorch神经网络

    Colaboratory 是免费的 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.关键是还有免费的GPU可以使用!用Colab训练PyTorch神经网络步骤如下: 1: ...

  7. 重读JavaScript高级程序设计

    不断更新中--- 第三章 基本概念 1.变量声明但未初始化值是undefined,而未声明的变量只能执行typeof操作,并且未初始化和未声明用typeof都同样返回undefined 2.Numbe ...

  8. Digital adjustment of LM317

  9. 爬虫IP被禁的简单解决方法

    爬虫以前听上去好厉害好神秘的样子,用好了可以成就像Google.百度这样的索索引擎,用不好可以凭借不恰当的高并发分分钟崩掉一个小型网站.写到这里想到12306每年扛住的并发请求量,觉得好牛逼. 爬虫和 ...

  10. oracle 两个逗号分割的字符串 如何判断是否其中有相同值

    比如字段A: 'ab,cd,ef,gh'字段B: 'aa,bb,cc,dd' 没有相同值 字段A: 'ab,cd,ef,gh'字段B: 'aa,bb,cd,dd' 有相同值cd 1.CREATE OR ...