SVM Kernel Functions
====================================================================
This article came from here.
Thanks for zhizhihu.
====================================================================
Kernel Functions
Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily available from their alternate text html tag. I can not guarantee all of them are perfectly correct, thus use them at your own risk. Most of them have links to articles where they have been originally used or proposed.
1. Linear Kernel
The Linear kernel is the simplest kernel function. It is given by the inner product <x,y> plus an optional constant c. Kernel algorithms using a linear kernel are often equivalent to their non-kernel counterparts, i.e. KPCA with linear kernel is the same as standard PCA.
2. Polynomial Kernel
The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for problems where all the training data is normalized.
Adjustable parameters are the slope alpha, the constant term c and the polynomial degree d.
3. Gaussian Kernel
The Gaussian kernel is an example of radial basis function kernel.
Alternatively, it could also be implemented using
The adjustable parameter sigma plays a major role in the performance of the kernel, and should be carefully tuned to the problem at hand. If overestimated, the exponential will behave almost linearly and the higher-dimensional projection will start to lose its non-linear power. In the other hand, if underestimated, the function will lack regularization and the decision boundary will be highly sensitive to noise in training data.
4. Exponential Kernel
The exponential kernel is closely related to the Gaussian kernel, with only the square of the norm left out. It is also a radial basis function kernel.
5. Laplacian Kernel
The Laplace Kernel is completely equivalent to the exponential kernel, except for being less sensitive for changes in the sigma parameter. Being equivalent, it is also a radial basis function kernel.
It is important to note that the observations made about the sigma parameter for the Gaussian kernel also apply to the Exponential and Laplacian kernels.
6. ANOVA Kernel
The ANOVA kernel is also a radial basis function kernel, just as the Gaussian and Laplacian kernels. It is said to perform well in multidimensional regression problems (Hofmann, 2008).
7. Hyperbolic Tangent (Sigmoid) Kernel
The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel and as the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel comes from the Neural Networks field, where the bipolar sigmoid function is often used as an activation function for artificial neurons.
It is interesting to note that a SVM model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural network. This kernel was quite popular for support vector machines due to its origin from neural network theory. Also, despite being only conditionally positive definite, it has been found to perform well in practice.
There are two adjustable parameters in the sigmoid kernel, the slope alpha and the intercept constant c. A common value for alpha is 1/N, where N is the data dimension. A more detailed study on sigmoid kernels can be found in the works by Hsuan-Tien and Chih-Jen.
8. Rational Quadratic Kernel
The Rational Quadratic kernel is less computationally intensive than the Gaussian kernel and can be used as an alternative when using the Gaussian becomes too expensive.
9. Multiquadric Kernel
The Multiquadric kernel can be used in the same situations as the Rational Quadratic kernel. As is the case with the Sigmoid kernel, it is also an example of an non-positive definite kernel.
10. Inverse Multiquadric Kernel
The Inverse Multi Quadric kernel. As with the Gaussian kernel, it results in a kernel matrix with full rank (Micchelli, 1986) and thus forms a infinite dimension feature space.
11. Circular Kernel
The circular kernel comes from a statistics perspective. It is an example of an isotropic stationary kernel and is positive definite in R2.
12. Spherical Kernel
The spherical kernel is similar to the circular kernel, but is positive definite in R3.
13. Wave Kernel
The Wave kernel is also symmetric positive semi-definite (Huang, 2008).
14. Power Kernel
The Power kernel is also known as the (unrectified) triangular kernel. It is an example of scale-invariant kernel (Sahbi and Fleuret, 2004) and is also only conditionally positive definite.
15. Log Kernel
The Log kernel seems to be particularly interesting for images, but is only conditionally positive definite.
16. Spline Kernel
The Spline kernel is given as a piece-wise cubic polynomial, as derived in the works by Gunn (1998).
However, what it actually mean is:
With
17. B-Spline (Radial Basis Function) Kernel
The B-Spline kernel is defined on the interval [−1, 1]. It is given by the recursive formula:
In the work by Bart Hamers it is given by:
Alternatively, Bn can be computed using the explicit expression (Fomel, 2000):
Where x+ is defined as the truncated power function:
18. Bessel Kernel
The Bessel kernel is well known in the theory of function spaces of fractional smoothness. It is given by:
where J is the Bessel function of first kind. However, in the Kernlab for R documentation, the Bessel kernel is said to be:
19. Cauchy Kernel
The Cauchy kernel comes from the Cauchy distribution (Basak, 2008). It is a long-tailed kernel and can be used to give long-range influence and sensitivity over the high dimension space.
20. Chi-Square Kernel
The Chi-Square kernel comes from the Chi-Square distribution.
21. Histogram Intersection Kernel
The Histogram Intersection Kernel is also known as the Min Kernel and has been proven useful in image classification.
22. Generalized Histogram Intersection
The Generalized Histogram Intersection kernel is built based on the Histogram Intersection Kernelfor image classification but applies in a much larger variety of contexts (Boughorbel, 2005). It is given by:
23. Generalized T-Student Kernel
The Generalized T-Student Kernel has been proven to be a Mercel Kernel, thus having a positive semi-definite Kernel matrix (Boughorbel, 2004). It is given by:
24. Bayesian Kernel
The Bayesian kernel could be given as:
where
However, it really depends on the problem being modeled. For more information, please see the work by Alashwal, Deris and Othman, in which they used a SVM with Bayesian kernels in the prediction of protein-protein interactions.
25. Wavelet Kernel
The Wavelet kernel (Zhang et al, 2004) comes from Wavelet theory and is given as:
Where a and c are the wavelet dilation and translation coefficients, respectively (the form presented above is a simplification, please see the original paper for details). A translation-invariant version of this kernel can be given as:
Where in both h(x) denotes a mother wavelet function. In the paper by Li Zhang, Weida Zhou, and Licheng Jiao, the authors suggests a possible h(x) as:
Which they also prove as an admissible kernel function.
SVM Kernel Functions的更多相关文章
- HDU 5095 Linearization of the kernel functions in SVM(模拟)
主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5095 Problem Description SVM(Support Vector Machine) ...
- HDU 5095--Linearization of the kernel functions in SVM【模拟】
Linearization of the kernel functions in SVM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- Linearization of the kernel functions in SVM(多项式模拟)
Description SVM(Support Vector Machine)is an important classification tool, which has a wide range o ...
- 模拟 HDOJ 5095 Linearization of the kernel functions in SVM
题目传送门 /* 题意:表达式转换 模拟:题目不难,也好理解题意,就是有坑!具体的看测试样例... */ #include <cstdio> #include <algorithm& ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Kernel Functions-Introduction to SVM Kernel & Examples - DataFlair
Kernel Functions-Introduction to SVM Kernel & Examples - DataFlairhttps://data-flair.training/bl ...
- HDU 5095 Linearization of the kernel functions in SVM (坑水)
比较坑的水题,首项前面的符号,-1,+1,只有数字项的时候要输出0. 感受一下这些数据 160 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 ...
- hdu 5095 Linearization of the kernel functions in SVM(模拟,分类清楚就行)
题意: INPUT: The input of the first line is an integer T, which is the number of test data (T<120). ...
- ML- 核函数(Kernel) 的 SVM
Why 核函数 目的是为了解决线性不可分问题. 核心思想是升维. 当样本点在低维空间不能很好地分开的时候, 可以考虑将样本通过某种映射(就是左乘一个矩阵) 到高维空间中, 然后在高维空间就容易求解一个 ...
随机推荐
- 20135327郭皓——Linux内核分析第二周 操作系统是如何工作的
操作系统是如何工作的 上章重点回顾: 计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的 ...
- Github: 团队账号:https://github.com/ChenRuTing
Github: 团队账号:https://github.com/ChenRuTing 以后我们做好的代码会随时更新上传到这里,请老师届时帮我们看看.谢谢老师.
- 第一个spring,第五天。
陈志棚:界面跳转与框架 李天麟:游戏界面ui 徐侃:算法代码的设计 经过五天的时间,经过队员的汇报,我们初步已经完成了各项的任务.
- XCODE 6.1.1 配置GLFW
最近在学习opengl的相关知识.第一件事就是配环境(好烦躁).了解了一下os x下的OpenGL开源库,主要有几个:GLUT,freeglut,GLFW等.关于其详细的介绍可以参考opengl网站( ...
- Office处理
1.NPOI:一个开源项目,不需要安装Microsoft Office,支持对Office 97-2003,2007文件格式,功能比较强大. http://npoi.codeplex.com/ 2.a ...
- Android 7.0+相机、相册、裁剪适配问题
Android 7.0+相机.相册.裁剪适配问题 在manifest中: <provider android:name="android.support.v4.content.File ...
- Alpha 冲刺一
团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 界面(简陋) 登录界 ...
- Linux 备份 文件夹的权限 然后在其他机器进行恢复
Study From https://www.cnblogs.com/chenshoubiao/p/4780987.html 用到的命令 getfacl 和 setfacl 备份 getfacl -R ...
- Docker run centos 内部使用systemctl 启动服务的方法
1. 执行docker 镜像 使用命令为 docker run --privileged=true -ti -e "container=docker" centos /usr/sb ...
- [代码]--给GridControl中的某列添加图片
要让GridControl的某列显示图片只需要数据源中有图片就可以正确显示 1.给DataSet添加一列,格式为image ds.Tables[].Columns.Add("SIGN&quo ...