SVM Kernel Functions
====================================================================
This article came from here.
Thanks for zhizhihu.
====================================================================
Kernel Functions
Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily available from their alternate text html tag. I can not guarantee all of them are perfectly correct, thus use them at your own risk. Most of them have links to articles where they have been originally used or proposed.
1. Linear Kernel
The Linear kernel is the simplest kernel function. It is given by the inner product <x,y> plus an optional constant c. Kernel algorithms using a linear kernel are often equivalent to their non-kernel counterparts, i.e. KPCA with linear kernel is the same as standard PCA.
2. Polynomial Kernel
The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for problems where all the training data is normalized.
Adjustable parameters are the slope alpha, the constant term c and the polynomial degree d.
3. Gaussian Kernel
The Gaussian kernel is an example of radial basis function kernel.
Alternatively, it could also be implemented using
The adjustable parameter sigma plays a major role in the performance of the kernel, and should be carefully tuned to the problem at hand. If overestimated, the exponential will behave almost linearly and the higher-dimensional projection will start to lose its non-linear power. In the other hand, if underestimated, the function will lack regularization and the decision boundary will be highly sensitive to noise in training data.
4. Exponential Kernel
The exponential kernel is closely related to the Gaussian kernel, with only the square of the norm left out. It is also a radial basis function kernel.
5. Laplacian Kernel
The Laplace Kernel is completely equivalent to the exponential kernel, except for being less sensitive for changes in the sigma parameter. Being equivalent, it is also a radial basis function kernel.
It is important to note that the observations made about the sigma parameter for the Gaussian kernel also apply to the Exponential and Laplacian kernels.
6. ANOVA Kernel
The ANOVA kernel is also a radial basis function kernel, just as the Gaussian and Laplacian kernels. It is said to perform well in multidimensional regression problems (Hofmann, 2008).
7. Hyperbolic Tangent (Sigmoid) Kernel
The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel and as the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel comes from the Neural Networks field, where the bipolar sigmoid function is often used as an activation function for artificial neurons.
It is interesting to note that a SVM model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural network. This kernel was quite popular for support vector machines due to its origin from neural network theory. Also, despite being only conditionally positive definite, it has been found to perform well in practice.
There are two adjustable parameters in the sigmoid kernel, the slope alpha and the intercept constant c. A common value for alpha is 1/N, where N is the data dimension. A more detailed study on sigmoid kernels can be found in the works by Hsuan-Tien and Chih-Jen.
8. Rational Quadratic Kernel
The Rational Quadratic kernel is less computationally intensive than the Gaussian kernel and can be used as an alternative when using the Gaussian becomes too expensive.
9. Multiquadric Kernel
The Multiquadric kernel can be used in the same situations as the Rational Quadratic kernel. As is the case with the Sigmoid kernel, it is also an example of an non-positive definite kernel.
10. Inverse Multiquadric Kernel
The Inverse Multi Quadric kernel. As with the Gaussian kernel, it results in a kernel matrix with full rank (Micchelli, 1986) and thus forms a infinite dimension feature space.
11. Circular Kernel
The circular kernel comes from a statistics perspective. It is an example of an isotropic stationary kernel and is positive definite in R2.
12. Spherical Kernel
The spherical kernel is similar to the circular kernel, but is positive definite in R3.
13. Wave Kernel
The Wave kernel is also symmetric positive semi-definite (Huang, 2008).
14. Power Kernel
The Power kernel is also known as the (unrectified) triangular kernel. It is an example of scale-invariant kernel (Sahbi and Fleuret, 2004) and is also only conditionally positive definite.
15. Log Kernel
The Log kernel seems to be particularly interesting for images, but is only conditionally positive definite.
16. Spline Kernel
The Spline kernel is given as a piece-wise cubic polynomial, as derived in the works by Gunn (1998).
However, what it actually mean is:
With
17. B-Spline (Radial Basis Function) Kernel
The B-Spline kernel is defined on the interval [−1, 1]. It is given by the recursive formula:
In the work by Bart Hamers it is given by:
Alternatively, Bn can be computed using the explicit expression (Fomel, 2000):
Where x+ is defined as the truncated power function:
18. Bessel Kernel
The Bessel kernel is well known in the theory of function spaces of fractional smoothness. It is given by:
where J is the Bessel function of first kind. However, in the Kernlab for R documentation, the Bessel kernel is said to be:
19. Cauchy Kernel
The Cauchy kernel comes from the Cauchy distribution (Basak, 2008). It is a long-tailed kernel and can be used to give long-range influence and sensitivity over the high dimension space.
20. Chi-Square Kernel
The Chi-Square kernel comes from the Chi-Square distribution.
21. Histogram Intersection Kernel
The Histogram Intersection Kernel is also known as the Min Kernel and has been proven useful in image classification.
22. Generalized Histogram Intersection
The Generalized Histogram Intersection kernel is built based on the Histogram Intersection Kernelfor image classification but applies in a much larger variety of contexts (Boughorbel, 2005). It is given by:
23. Generalized T-Student Kernel
The Generalized T-Student Kernel has been proven to be a Mercel Kernel, thus having a positive semi-definite Kernel matrix (Boughorbel, 2004). It is given by:
24. Bayesian Kernel
The Bayesian kernel could be given as:
where
However, it really depends on the problem being modeled. For more information, please see the work by Alashwal, Deris and Othman, in which they used a SVM with Bayesian kernels in the prediction of protein-protein interactions.
25. Wavelet Kernel
The Wavelet kernel (Zhang et al, 2004) comes from Wavelet theory and is given as:
Where a and c are the wavelet dilation and translation coefficients, respectively (the form presented above is a simplification, please see the original paper for details). A translation-invariant version of this kernel can be given as:
Where in both h(x) denotes a mother wavelet function. In the paper by Li Zhang, Weida Zhou, and Licheng Jiao, the authors suggests a possible h(x) as:
Which they also prove as an admissible kernel function.
SVM Kernel Functions的更多相关文章
- HDU 5095 Linearization of the kernel functions in SVM(模拟)
主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5095 Problem Description SVM(Support Vector Machine) ...
- HDU 5095--Linearization of the kernel functions in SVM【模拟】
Linearization of the kernel functions in SVM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- Linearization of the kernel functions in SVM(多项式模拟)
Description SVM(Support Vector Machine)is an important classification tool, which has a wide range o ...
- 模拟 HDOJ 5095 Linearization of the kernel functions in SVM
题目传送门 /* 题意:表达式转换 模拟:题目不难,也好理解题意,就是有坑!具体的看测试样例... */ #include <cstdio> #include <algorithm& ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Kernel Functions-Introduction to SVM Kernel & Examples - DataFlair
Kernel Functions-Introduction to SVM Kernel & Examples - DataFlairhttps://data-flair.training/bl ...
- HDU 5095 Linearization of the kernel functions in SVM (坑水)
比较坑的水题,首项前面的符号,-1,+1,只有数字项的时候要输出0. 感受一下这些数据 160 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 ...
- hdu 5095 Linearization of the kernel functions in SVM(模拟,分类清楚就行)
题意: INPUT: The input of the first line is an integer T, which is the number of test data (T<120). ...
- ML- 核函数(Kernel) 的 SVM
Why 核函数 目的是为了解决线性不可分问题. 核心思想是升维. 当样本点在低维空间不能很好地分开的时候, 可以考虑将样本通过某种映射(就是左乘一个矩阵) 到高维空间中, 然后在高维空间就容易求解一个 ...
随机推荐
- 【MOOC EXP】Linux内核分析实验三报告
程涵 原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 [跟踪分析Linux内核的启动过程] ...
- linq to sql中的自动缓存(对象跟踪)
linq to sql中,对于同一个DataContext上下文环境,根据表主键选择记录时(当然这里所指的“记录”会自动转成“对象”),如果该记录已经被select过,默认情况下会被自动缓存下来,下次 ...
- ElasticSearch 2 (2) - Setup
ElasticSearch 2.1.1 (2) - Setup Installation Elasticsearch can be started using: $ bin/elasticsearc ...
- [2017BUAA软工]个人阅读作业+总结
阅读作业 没有银弹 No Silver Bullet - Essence and Accidents of Software Engineering - Brooks 在这篇论文中,作者阐述了软件的四 ...
- PAT 1044 火星数字
https://pintia.cn/problem-sets/994805260223102976/problems/994805279328157696 火星人是以13进制计数的: 地球人的0被火星 ...
- Apache ActiveMQ 学习一
Apache ActiveMQ 5.8.0 Java 7 support (compiled with jdk6 and validated with jdk7) apache-activemq-5. ...
- windows无法安装到这个磁盘 gpt分区形式
利用U盘装系统的步骤 工具: Rufus 下载地址:http://rufus.akeo.ie/?locale=zh_CN -------------------------------------- ...
- MT【165】分段函数
(2018浙江省赛12题改编)设$a\in R$,且对任意的实数$b$均有$\max\limits_{x\in[0,1]}|x^2+ax+b|\ge\dfrac{1}{4}$求$a$ 的范围. 提示: ...
- 【刷题】BZOJ 2287 【POJ Challenge】消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- 【BZOJ1559】[JSOI2009]密码(AC自动机,动态规划,搜索)
[BZOJ1559][JSOI2009]密码(AC自动机,动态规划,搜索) 题面 BZOJ 洛谷 题解 首先求方案数显然是构建\(AC\)自动机之后再状压\(dp\),似乎没有什么好讲的. 现在考虑答 ...