【题目】1519 拆方块
【题意】给定n个正整数,\(A_i\)表示第i堆叠了\(A_i\)个石子。每轮操作将至少有一面裸露的石子消除,问几轮所有石子均被消除。\(n \leq 10^5\)。
【算法】贪心+递推
观察每轮操作的变化:

\[A_i=min \{ A_i-1,A_{i-1},A_{i+1} \} \]

继续推导,因为每一轮要么-1要么取左右,那么也就是一个数传递到另一个位置要加上它们之间距离的代价(一轮一格,每轮少一个 -1 ),也就是每个数字都可以更新为:

\[A_x=\min_{i=1}^{n} \{ A_i+|x-i| \} \]

这样直接从左到右和从右到左分别递推一次即可。
最后两端的石子相当于最左和最右各有一堆高度为0的石子,递推的时候处理就可以了,答案就是所有数字的最大值。
复杂度\(O(n)\)。

【51Nod】1519 拆方块 贪心+递推的更多相关文章

  1. CF822D 贪心+递推

    CF822D [题目链接]CF822D [题目类型]贪心+递推 &题意: 给你n个人,你可以把他们分组,但必须保持每组相等,分组之后每2个人会比赛,比如一组有i个人,那么就要比赛 次,f[i] ...

  2. codeforces 735C Tennis Championship(贪心+递推)

    Tennis Championship 题目链接:http://codeforces.com/problemset/problem/735/C ——每天在线,欢迎留言谈论. 题目大意: 给你一个 n ...

  3. 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)

    计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...

  4. [NOI2017]蔬菜(贪心+递推)

    这题很有思维难度,乍一看基本无从下手. 给每个蔬菜钦定退役的时间显然很困难,可以考虑让时光倒流,从后向前递推,然后就变成了某个时间点有一部分蔬菜服役,而已经服役的蔬菜不会退役了.然后就可以直接考虑贪心 ...

  5. 51NOD 1149:Pi的递推式——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149 F(x) = 1 (0 <= x < 4) F(x) ...

  6. 51nod 1020 逆序排列 递推DP

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  7. 【51nod】1149 Pi的递推式

    题解 我们把这个函数的递归形式画成一张图,会发现答案是到每个出度为0的点的路径的方案数 这个可以用组合数算 记录一下P[i]为i减几次PI减到4以内 如果P[i + 1] > P[i],那么转向 ...

  8. 【51nod1519】拆方块[Codeforces](dp)

    题目传送门:1519 拆方块 首先,我们可以发现,如果第i堆方块被消除,只有三种情况: 1.第i-1堆方块全部被消除: 2.第i+1堆方块全部被消除:(因为两侧的方块能够保护这一堆方块在两侧不暴露) ...

  9. 51nod 1639 递推

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1639 1639 绑鞋带 基准时间限制:1 秒 空间限制:131072 K ...

随机推荐

  1. CentOS7安装OpenStack(Rocky版)-01.控制节点的系统环境准备

    分享一下Rocky版本的OpenStack安装管理经验: OpenStack每半年左右更新一版,目前是版本是201808月发布的版本-R版(Rocky),目前版本安装方法优化较好,不过依然是比较复杂 ...

  2. jmeter学习(1)基础支持+安装部署

    1. Apache jmeter 是100%的java桌面应用程序 支持的协议有:WEB-HTTP/HTTPS   , SOAP,   FTP,  JDBC,  LDAP, MAIL, MongoDB ...

  3. 《Linux内核设计与实现》第5章读书整理

                                 <第五章 系统调用>笔记 5.1 与内核通信 系统调用在用户空间和硬件设备之间提供了一个中间层. 中间层的作用: 为用户空间提供一 ...

  4. Alpha 冲刺六

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 今天没有进行站立式会议,由于团队内有些细节 ...

  5. Postgresql迁移数据文件存放位置

    1. POSTGRESQL的安装 centos7 里面默认的pgsql的版本是 如果想用更高的版本需要执行以下如下的命令 rpm -ivh https://download.postgresql.or ...

  6. [转帖]Mysql 开启跟踪的一个方法

    MySQL 事件跟踪器 , MySQL 无须重启服务 跟踪 SQL , 也无须配置日志 原博客地址: https://www.cnblogs.com/wuyifu/p/3328024.html 第一步 ...

  7. Navicat Premium和Navicat for MySQL哪个好用?

    之前在Navicat官网下载了Navicat Premium和Navicat for MySQL使用.Navicat官网产品下载地址:https://www.navicat.com.cn/produc ...

  8. oracle11g的安装

    1. 解压缩已经下载好的文件,两个文件一起解压,如图所示 2. 到解压路径当中找到setup.exe文件 3.安装的第一步,配置安全更新,如果不希望接收安全更新邮件可以选择将下方的复选框勾选去除 4. ...

  9. LJ 5月6日A组考试考试题解

    [题目] T1(L2837) 晚餐队列安排 [题面] 为了避免餐厅过分拥挤,FJ要求奶牛们分2批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想,所有第2批就餐的奶牛排在队尾,队伍的前半部分 ...

  10. P3232 [HNOI2013]游走 解题报告

    P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...