1. 用1阶至4阶Newton-Cotes公式计算积分

程序:

function I = NewtonCotes(f,a,b,type)

%

syms t;

t=findsym(sym(f));

I=0;

switch type

case 1,

I=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));

case 2,

I=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(a+b)/2)+...

subs(sym(f),t,b));

case 3,

I=((b-a)/8)*(subs(sym(f),t,a)+3*subs(sym(f),t,(2*a+b)/3)+...

3*subs(sym(f),t,(a+2*b)/3)+subs(sym(f),t,b));

case 4,

I=((b-a)/90)*(7*subs(sym(f),t,a)+...

32*subs(sym(f),t,(3*a+b)/4)+...

12*subs(sym(f),t,(a+b)/2)+...

32*subs(sym(f),t,(a+3*b)/4)+7*subs(sym(f),t,b));

case 5,

I=((b-a)/288)*(19*subs(sym(f),t,a)+...

75*subs(sym(f),t,(4*a+b)/5)+...

50*subs(sym(f),t,(3*a+2*b)/5)+...

50*subs(sym(f),t,(2*a+3*b)/5)+...

75*subs(sym(f),t,(a+4*b)/5)+19*subs(sym(f),t,b));

case 6,

I=((b-a)/840)*(41*subs(sym(f),t,a)+...

216*subs(sym(f),t,(5*a+b)/6)+...

27*subs(sym(f),t,(2*a+b)/3)+...

272*subs(sym(f),t,(a+b)/2)+...

27*subs(sym(f),t,(a+2*b)/3)+...

216*subs(sym(f),t,(a+5*b)/6)+...

41*subs(sym(f),t,b));

case 7,

I=((b-a)/17280)*(751*subs(sym(f),t,a)+...

3577*subs(sym(f),t,(6*a+b)/7)+...

1323*subs(sym(f),t,(5*a+2*b)/7)+...

2989*subs(sym(f),t,(4*a+3*b)/7)+...

2989*subs(sym(f),t,(3*a+4*b)/7)+...

1323*subs(sym(f),t,(2*a+5*b)/7)+...

3577*subs(sym(f),t,(a+6*b)/7)+751*subs(sym(f),t,b));

end

syms x

f=exp(-x).*sin(x);

a=0;b=2*pi;

I = NewtonCotes(f,a,b,1)

N=1:

I =

0

N=2:

I =

0

N=3:

I =

(pi*((3*3^(1/2)*exp(-(2*pi)/3))/2 - (3*3^(1/2)*exp(-(4*pi)/3))/2))/4

N=4:

I =

(pi*(32*exp(-pi/2) - 32*exp(-(3*pi)/2)))/45

2. 已知,因此可以通过数值积分计算的近似值。

(1)分别取和,利用复合梯形公式和复合Simpson公式计算的近似值;

程序:

function Y= CombineTraprl(f,a,b,h)

%用复合梯形公式计算积分

syms t;

t= findsym(sym(f));

n=(b-a)/h;

I1= subs(sym(f),t,a);

l=0;

for k=1:n-1

xk=a+h*k;

l=l+2*subs(sym(f),t,xk);

end

Y=(h/2)*(I1+l+subs(sym(f),t,b));

syms x

f=4/(1+x^2);

a=0;b=1;

y= CombineTraprl(f,a,b,0.1);

vpa(y,6)

h=0.1:

ans =

3.13993

H=0.2:

ans =

1.04498

复合辛普森:

function Y= CombineSimpson(f,a,b,h)

%用复合辛普森公式计算积分

syms t;

t= findsym(sym(f));

n=(b-a)/h;

I1= subs(sym(f),t,a);

l=0;

for k=1:n-1

xk=a+h*k;

l=l+2*subs(sym(f),t,xk);

end

l2=0;

for k=1:n-1

xk2=a+h*(k+1)/2;

l2=l2+4*subs(sym(f),t,xk2);

end

Y=(h/6)*(I1+l+l2+subs(sym(f),t,b));

H=0.1:

ans =

3.22605

H=0.2:

ans =

2.93353

(2)把区间[0,1] 等分,利用复合梯形公式和复合Simpson公式计算的近似值,若要求误差不超过,问需要把区间[0,1]划分成多少等份;

function n=trap(f,a,b)

syms t;

t= findsym(sym(f));

I=zeros(1,500);

I(1)=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));

I(2)=((b-a)/4)*(subs(sym(f),t,a)+2*subs(sym(f),t,(b-a)/2)+subs(sym(f),t,b));

k=3;

while((I(k-1)-I(k-2))>1/2*10^(-6))

l=0;

for i=1:k-1

xi=a+(b-a)/k*i;

l=l+2*subs(sym(f),t,xi);

end

I(k)=((b-a)/(2*k))*(subs(sym(f),t,a)+l+subs(sym(f),t,b));

k=k+1;

end

n=k-1;

syms x;

f=4./(1+x.^2);

a=0;b=1;

n=trap(f,a,b)

n =

88

复合辛普森公式:

function n=Simpson(f,a,b)

syms t;

t= findsym(sym(f));

I=zeros(1,500);

I(1)=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(b-a)/2)+subs(sym(f),t,b));

I(2)=((b-a)/12)*(subs(sym(f),t,a)+4*subs(sym(f),t,(b-a)/4)+4*subs(sym(f),t,3*(b-a)/4)+2*subs(sym(f),t,(b-a)/2)+subs(sym(f),t,b));

k=3;

while((I(k-1)-I(k-2))>1/2*10^(-6))

l=0;

m=4*subs(sum(f),t,(a+((a+b)/(2*k))));

for i=1:k-1

xi=a+(b-a)/k*i;

l=l+2*subs(sym(f),t,xi);

end

for j=1:k-1

xj=a+(b-a)/(k*2)+(b-a)/k*j;

m=m+4*subs(sym(f),t,xj);

end

I(k)=((b-a)/(2*k))*(subs(sym(f),t,a)+l+m+subs(sym(f),t,b));

k=k+1;

end

n=k-1;

n =

5

(3)选择不同的,对两种复合求积公式,试将误差描述为的函数,并比较两种方法的精度。

复合求积公式:

function y=traprls(f,a,b,h)

syms t;

t= findsym(sym(f));

n=(b-a)/h;

l=0;

for k=1:n-1

xk=a+h*k;

l=l+2*subs(sym(f),t,xk);

end

I1=(h/2)*(subs(sym(f),t,a)+l+subs(sym(f),t,b));

h=(b-a)/(n-1);

n=(b-a)/h;

l=0;

for k=1:n-1

xk=a+h*k;

l=l+2*subs(sym(f),t,xk);

end

I2=(h/2)*(subs(sym(f),t,a)+l+subs(sym(f),t,b));

y=I2-I1;

y=abs(y);

y=vpa(y,8);

syms x;

f=4./(1+x.^2);

a=0;b=1;

h=0.01:0.05:0.5;

v=zeros(1,10);

for i=1:10

v(i)=traprls(f,a,b,h(i))

end

v

plot(h,v,'r-')

复合辛普森公式:

function y=Simpsons(f,a,b,h)

syms t;

t= findsym(sym(f));

n=(b-a)/h;

l=0;

m=4*subs(sum(f),t,(a+h/2));

for k=1:n-1

xk=a++h*k;

l=l+2*subs(sym(f),t,xk);

end

for i=1:n-1

xi=a+h/2+h*i;

m=m+4*subs(sym(f),t,xi);

end

I1=(h/6)*(subs(sym(f),t,a)+l+m+subs(sym(f),t,b));

h=(b-a)/(n-1);

n=(b-a)/h;

l=0;

m=4*subs(sum(f),t,(a+h/2));

for k=1:n-1

xk=a++h*k;

l=l+2*subs(sym(f),t,xk);

end

for i=1:n-1

xi=a+h/2+h*i;

m=m+4*subs(sym(f),t,xi);

end

I2=(h/6)*(subs(sym(f),t,a)+l+m+subs(sym(f),t,b));

y=abs(I2-I1);

y=vpa(y,10);

通过图像对比可知,复合辛普森公式精度更高。

(4)是否存在某个值,当小于这个值之后,再继续减小,计算结果不再有改进?为什么?

复合求积公式:

syms x;

f=4./(1+x.^2);

a=0;b=1;

h=0.001:0.004:0.2;

v=zeros(1,10);

for i=1:50

v(i)=traprls(f,a,b,h(i));

end

plot(h,v,'r-')

复合辛普森公式:

通过图像可以发现,当h<0.025后,精度不再有显著改变。

3. 分别用三点和五点Gauss-Legendre公式计算积分

程序:

function I = IntGaussLegen(f,a,b,n)

syms t;

t= findsym(sym(f));

ta = (b-a)/2;

tb = (a+b)/2;

switch n

case 0,

I=2*ta*subs(sym(f),t,tb);

case 1,

I=ta*(subs(sym(f),t,ta*0.5773503+tb)+...

subs(sym(f),t,-ta*0.5773503+tb));

case 2,

I=ta*(0.55555556*subs(sym(f),t,ta*0.7745967+tb)+...

0.55555556*subs(sym(f),t,-ta*0.7745967+tb)+...

0.88888889*subs(sym(f),t,tb));

case 3,

I=ta*(0.3478548*subs(sym(f),t,ta*0.8611363+tb)+...

0.3478548*subs(sym(f),t,-ta*0.8611363+tb)+...

0.6521452*subs(sym(f),t,ta*0.3398810+tb) +...

0.6521452*subs(sym(f),t,-ta*0.3398810+tb));

case 4,

I=ta*(0.2369269*subs(sym(f),t,ta*0.9061793+tb)+...

0.2369269*subs(sym(f),t,-ta*0.9061793+tb)+...

0.4786287*subs(sym(f),t,ta*0.5384693+tb) +...

0.4786287*subs(sym(f),t,-ta*0.5384693+tb)+...

0.5688889*subs(sym(f),t,tb));

case 5,

I=ta*(0.1713245*subs(sym(f),t,ta*0.9324695+tb)+...

0.1713245*subs(sym(f),t,-ta*0.9324695+tb)+...

0.3607616*subs(sym(f),t,ta*0.6612094+tb)+...

0.3607616*subs(sym(f),t,-ta*0.6612094+tb)+...

0.4679139*subs(sym(f),t,ta*0.2386292+tb)+...

0.4679139*subs(sym(f),t,-ta*0.2386292+tb));

end

I=simplify(I);

I=vpa(I,6);

三点:

syms x

f=x.*exp(x)./((1+x)^2);

a=0;b=1;

a=IntGaussLegen(f,a,b,2)

a =

0.359187

五点:

a =

0.359141

复合梯形公式、复合辛普森公式 matlab的更多相关文章

  1. C语言复合梯形公式实现定积分

    假设被积函数为   f x ,积分区间为   , a b ,把区间   , a b 等分成 n 个小区间, 各个区间的长度为 h ,即   / h b a n   ,称之为“步长” ...

  2. 复合梯形公式与Simpson公式的数值积分

    #include <iostream>#include<math.h>#include<stdio.h>using namespace std; float f(f ...

  3. MATLAB数学实验总结

    L1 MATLAB 基础知识 P6 表1-3 数据显示格式 format rat format long P20 表2-5 常用的矩阵函数 zeros(m,n) %零阵 eye(n) %单位阵 one ...

  4. [Beautifulzzzz的博客目录] 快速索引点这儿O(∩_∩)O~~,红色标记的是不错的(⊙o⊙)哦~

    3D相关开发 [direct-X] 1.direct-X最小框架 [OpenGL] 1.环境搭建及最小系统 [OpenGL] 2.企业版VC6.0自带的Win32-OpenGL工程浅析 51单片机 [ ...

  5. C语言实现定积分求解方法

    求定积分的方法有很多种,下面是我总结的几种比较常用的方法. #include <stdio.h> #include <stdlib.h> #include <math.h ...

  6. deep learning (六)logistic(逻辑斯蒂)回归中L2范数的应用

    zaish上一节讲了线性回归中L2范数的应用,这里继续logistic回归L2范数的应用. 先说一下问题:有一堆二维数据点,这些点的标记有的是1,有的是0.我们的任务就是制作一个分界面区分出来这些点. ...

  7. 数值积分之Simpson公式与梯形公式

    Simpson(辛普森)公式和梯形公式是求数值积分中很重要的两个公式,可以帮助我们使用计算机求解数值积分,而在使用过程中也有多种方式,比如复合公式和变步长公式.这里分别给出其简单实现(C++版): 1 ...

  8. 数值积分:基于牛顿-柯茨公式的定步长和自适应积分方法 [MATLAB]

    #先上代码后补笔记# #可以直接复制粘贴使用的MATLAB函数!# 1. 定步长牛顿-柯茨积分公式 function [ integration ] = CompoInt( func, left, r ...

  9. 卷积相关公式的matlab代码

    取半径=3 用matlab代码实现上式公式: length=3;for Ki = 1:length for Kj = 1:length for Kk = 1:length Ksigma(Ki,Kj,K ...

随机推荐

  1. niftynet Demo分析 -- brain_parcellation

    brain_parcellation 论文详细介绍 通过从脑部MR图像中分割155个神经结构来验证该网络学习3D表示的效率 目标:设计一个高分辨率和紧凑的网络架构来分割体积图像中的精细结构 特点:大多 ...

  2. 【学习笔记】浅析Promise函数

    一.Promise是什么? 在JavaScript中,所有的代码都是单线程执行,所以javaScript的所有网络操作(“GET”/"POST"/"PUT"/& ...

  3. 用canvas画弧形进度条

    function toCanvas(id ,progress){ //canvas进度条 var canvas = document.getElementById(id), ctx = canvas. ...

  4. MVC使用Flash来显示图片

    Insus.NET实现一些网站模版,如用户能动态变更网站的头,中间或是脚的部位,就是不太确定用户上传的是图片,还是Flash.因此想到一个较好的解决方法,就是使用Flash的组件去显示来源的图片或是. ...

  5. [javaSE] 看知乎学习反射

    简单的来说,反射机制指的是程序在运行时能够获取自身的信息.在java中,只要给定类的名字,那么就可以通过反射机制来获得类的所有信息. 知乎:学习java应该如何理解反射?   余晖: 反射提供了一种运 ...

  6. 关于项目管理工具 maven

    众所周知,maven是目前很常用的项目管理工具.一般情况下,通过在pom.xml添加相应内容,再maven-->update就会自动把相应的jar包下载.配置好,非常方便. 一般每新建一个wor ...

  7. Java面试题阶段汇总

    初级面试题   Java面试题-基础篇一 Java面试题-基础篇二 Java面试题-集合框架篇三 Java面试题-基础篇四 Java面试题-基础篇五 Java面试题-javaweb篇六 Java面试题 ...

  8. sql语句之from子句

    如何从表中查询一个字端的数据 select  字段名  from  表名: 演示:从s_emp表中把月薪查询出来 select salary from s_emp ; (分号代表结束) 如何从表中查询 ...

  9. PHP获取本周的每一天的时间

    1.PHP获取未来一周的时间 public function getWeek() { for($i=0;$i<7;$i++) { $arr[$i]=date('Y-m-d',strtotime( ...

  10. input不可编辑且颜色不变

    <input name="ly_qq" type="text" tabindex="2" onMouseOver="this ...