0. 说明

  Spark Streaming 介绍 && 在 IDEA 中编写 Spark Streaming 程序


1. Spark Streaming 介绍

  Spark Streaming 是 Spark Core API 的扩展,针对实时数据流计算,具有可伸缩性、高吞吐量、自动容错机制的特点。

  数据源可以来自于多种方式,例如 Kafka、Flume 等等。

  使用类似于 RDD 的高级算子进行复杂计算,像 map 、reduce 、join 和 window 等等。

  最后,处理的数据推送到数据库、文件系统或者仪表盘等。也可以对流计算应用机器学习和图计算。

  

  在内部,Spark Streaming 接收实时数据流,然后切割成一个个批次,然后通过 Spark 引擎生成 result 的数据流。

  

  Spark Streaming 提供了称为离散流(DStream-discretized stream)的高级抽象,代表了连续的数据流。离散流通过 Kafka、 Flume 等源创建,也可以通过高级操作像 map、filter 等变换得到,类似于 RDD 的行为。内部,离散流表现为连续的 RDD。


2. 在 IDEA 中编写 Spark Streaming 程序(Scala)

  【2.1 添加依赖】

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.</modelVersion> <groupId>com.share</groupId>
<artifactId>myspark</artifactId>
<version>1.0-SNAPSHOT</version> <properties>
<spark.version>2.1.</spark.version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.1.</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.1.</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies> </project>

  【2.2 编写代码】

package com.share.sparkstreaming.scala

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext} /**
* Spark Streaming 的 Scala 版 Word Count 程序
*/
object SparkStreamingScala1 {
def main(args: Array[String]): Unit = { val conf = new SparkConf()
conf.setAppName("Streaming")
// 至少2 以上
conf.setMaster("local[2]") // 创建 Spark Streaming Context ,间隔 1 s
val sc = new StreamingContext(conf , Seconds(1)) // 对接 socket 文本流
val lines = sc.socketTextStream("s101", 8888)
val words = lines.flatMap(_.split(" "))
val pair = words.map((_,1))
val rdd = pair.reduceByKey(_+_) // 打印结果
rdd.print() // 启动上下文
sc.start() // 等待停止
sc.awaitTermination()
}
}

  【2.3 修改 Log4j 日志输出级别】

  

  【2.4 启动服务器 s101 的 nc】

  nc -lk 

  【2.5 运行程序并验证】

  略


3. 在 IDEA 中编写 Spark Streaming 程序(Java)

package com.share.sparkstreaming.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator; /**
* Spark Streaming 的 Scala 版 Word Count 程序
*/
public class WordCountStreamingJava1 {
public static void main(String[] args) throws InterruptedException {
SparkConf conf = new SparkConf();
conf.setAppName("Streaming");
conf.setMaster("local[*]"); // 创建 Spark Streaming Context ,间隔 2 s
JavaStreamingContext sc = new JavaStreamingContext(conf, Durations.seconds(2));
// 对接 socket 文本流
JavaDStream<String> ds1 = sc.socketTextStream("s101", 8888); // 压扁
JavaDStream<String> ds2 = ds1.flatMap(new FlatMapFunction<String, String>() {
public Iterator<String> call(String s) {
return Arrays.asList(s.split(" ")).iterator();
}
});
// 变换成对
JavaPairDStream<String, Integer> ds3 = ds2.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
});
// 聚合
JavaPairDStream<String, Integer> ds4 = ds3.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); // 打印结果
ds4.print();
// 启动上下文
sc.start();
// 等待停止
sc.awaitTermination();
}
}

[Spark Streaming_1] Spark Streaming 概述的更多相关文章

  1. 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化

    第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...

  2. Spark机器学习 Day1 机器学习概述

    Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源 ...

  3. Real Time Credit Card Fraud Detection with Apache Spark and Event Streaming

    https://mapr.com/blog/real-time-credit-card-fraud-detection-apache-spark-and-event-streaming/ Editor ...

  4. Spark 以及 spark streaming 核心原理及实践

    收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年, ...

  5. 大话Spark(1)-Spark概述与核心概念

    说到Spark就不得不提MapReduce/Hadoop, 当前越来越多的公司已经把大数据计算引擎从MapReduce升级到了Spark. 至于原因当然是MapReduce的一些局限性了, 我们一起先 ...

  6. 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池

    第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...

  7. spark教程(16)-Streaming 之 DStream 详解

    DStream 其实是 RDD 的序列,它的语法与 RDD 类似,分为 transformation(转换) 和 output(输出) 两种操作: DStream 的转换操作分为 无状态转换 和 有状 ...

  8. WARN deploy.SparkSubmit$$anon$2: Failed to load org.apache.spark.examples.sql.streaming.StructuredNetworkWordCount.

    前言 今天运行Spark Structured Streaming官网的如下 ./bin/run-example org.apache.spark.examples.sql.streaming.Str ...

  9. 【转】科普Spark,Spark是什么,如何使用Spark

    本博文是转自如下链接,为了方便自己查阅学习和他人交流.感谢原博主的提供! http://www.aboutyun.com/thread-6849-1-1.html http://www.aboutyu ...

随机推荐

  1. 了解MySQL联表查询中的驱动表,优化查询,以小表驱动大表

    一.为什么要用小表驱动大表 1.驱动表的定义 当进行多表连接查询时, [驱动表] 的定义为: 1)指定了联接条件时,满足查询条件的记录行数少的表为[驱动表] 2)未指定联接条件时,行数少的表为[驱动表 ...

  2. JDK并发包中ExecutorCompletionService使用

    相信大家都知道,jdk中ExecutorService是并发编程时使用很频繁的接口,并且使用很方便,那么想在有这么一个场景: 一批任务使用线程池处理,并且需要获得结果,但是不关心任务执行结束后输出结果 ...

  3. springMVC实现 MultipartFile 多文件上传

    1.Maven引入所需的 jar 包(或自行下载) <dependency> <groupId>commons-io</groupId> <artifactI ...

  4. 快速把项目部署到webLogic上

    weblogic简介BEA WebLogic是用于开发.集成.部署和管理大型分布式Web应用.网络应用和数据库应 用的Java应用服务器.将Java的动态功能和Java Enterprise标准的安全 ...

  5. 解析js中( ( ) { } ( ) )的含义

    //实例var tensquared=(function(x) { return x*x; }(10)); 首先我们来拆解这一行语句: 一. var tensquared = xx; 这是赋值语句: ...

  6. UVA 1605 Building for UN(思维)

    题目链接: https://cn.vjudge.net/problem/UVA-1605#author=0 /* 问题 设计一个包含若干层的联合国大厦,其中每一层都是等大的网格,每个格子分配给一个国家 ...

  7. 【Tomcat】tomcat配置文件详解

    Tomcat Server的结构图 结构框架,如下 属性表格 元素名 属性 解释 server(它代表整个容器,是Tomcat实例的顶层元素.由org.apache.catalina.Server接口 ...

  8. 方格填数-2015决赛C语言A组第一题

    在2行5列的格子中填入1到10的数字. 要求: 相邻的格子中的数,右边的大于左边的,下边的大于上边的. 如[图1.png]所示的2种,就是合格的填法.请你计算一共有多少种可能的方案.请提交该整数,不要 ...

  9. __int64 与long long 的区别

    //为了和DSP兼容,TSint64和TUint64设置成TSint40和TUint40一样的数 //结果VC中还是认为是32位的,显然不合适 //typedef signed long int    ...

  10. 两车追及或相遇问题(hdu1275)数学题

    两车追及或相遇问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...