【刷题】BZOJ 2724 [Violet 6]蒲公英
Description
Input
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
Output
Sample Input
6 3
1 2 3 2 1 2
1 5
3 6
1 5
Sample Output
1
2
1
HINT
修正下:
n <= 40000, m <= 50000
Solution
考虑分块,存两个东西,一个是两个块之间包含的区间的答案,另一个块的每个蒲公英的出现次数的前缀和
之前还要离散化
询问的时候就只要走边角料就可以了,访问一种蒲公英的出现次数用前缀和作差就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=40000+10,MAXM=200+10;
int n,m,a[MAXN],sum[MAXM][MAXN],id[MAXM][MAXM],P[MAXN],vis[MAXN],st[MAXM],ed[MAXM],cnt,lastans,unit,bel[MAXN];
std::vector<int> V;
std::map<int,int> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void discretization()
{
REP(i,1,n)V.push_back(a[i]);
std::sort(V.begin(),V.end());
V.erase(std::unique(V.begin(),V.end()),V.end());
REP(i,0,V.size()-1)M[V[i]]=i+1,P[i+1]=V[i];
REP(i,1,n)a[i]=M[a[i]];
}
inline void init()
{
unit=std::sqrt(n);
REP(i,1,n)bel[i]=(i-1)/unit+1;
for(register int i=1;i<=n;i+=unit)st[++cnt]=i,ed[cnt]=min(i+unit-1,n);
REP(i,1,cnt)
{
REP(j,1,n)sum[i][j]=sum[i-1][j];
REP(j,st[i],ed[i])sum[i][a[j]]++;
}
REP(i,1,cnt)
{
int app=0,res=0;
REP(j,i,cnt)
{
REP(k,st[j],ed[j])
{
vis[a[k]]++;
if(vis[a[k]]==app)chkmin(res,a[k]);
else if(vis[a[k]]>app)app=vis[a[k]],res=a[k];
}
id[i][j]=res;
}
REP(j,st[i],n)vis[a[j]]--;
}
}
inline int solve(int l,int r)
{
int app=0,res=0;
if(bel[r]-bel[l]<=1)
{
REP(i,l,r)
{
vis[a[i]]++;
if(vis[a[i]]==app)chkmin(res,a[i]);
else if(vis[a[i]]>app)app=vis[a[i]],res=a[i];
}
REP(i,l,r)vis[a[i]]--;
return res;
}
res=id[bel[l]+1][bel[r]-1];
app=sum[bel[r]-1][res]-sum[bel[l]][res];
DEP(i,ed[bel[l]],l)
{
vis[a[i]]++;
int all=sum[bel[r]-1][a[i]]-sum[bel[l]][a[i]]+vis[a[i]];
if(all==app)chkmin(res,a[i]);
else if(all>app)app=all,res=a[i];
}
REP(i,st[bel[r]],r)
{
vis[a[i]]++;
int all=sum[bel[r]-1][a[i]]-sum[bel[l]][a[i]]+vis[a[i]];
if(all==app)chkmin(res,a[i]);
else if(all>app)app=all,res=a[i];
}
DEP(i,ed[bel[l]],l)vis[a[i]]--;
REP(i,st[bel[r]],r)vis[a[i]]--;
return res;
}
int main()
{
read(n);read(m);
REP(i,1,n)read(a[i]);
discretization();
init();
while(m--)
{
int x,y,l,r;read(x);read(y);
l=(x+lastans-1)%n+1,r=(y+lastans-1)%n+1;
if(l>r)std::swap(l,r);
write(lastans=P[solve(l,r)],'\n');
}
return 0;
}
【刷题】BZOJ 2724 [Violet 6]蒲公英的更多相关文章
- BZOJ 2724: [Violet 6]蒲公英
2724: [Violet 6]蒲公英 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1633 Solved: 563[Submit][Status ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- [BZOJ 2724] [Violet 6] 蒲公英 【分块】
题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...
- BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]
传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...
- BZOJ.2724.[Violet 6]蒲公英(静态分块)
题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...
- BZOJ 2724 [Violet 6]蒲公英(分块)
题意 在线区间众数 思路 预处理出 f[i][j] 即从第 i 块到第 j 块的答案.对于每个询问,中间的整块直接用预处理出的,两端的 sqrtn 级别的数暴力做,用二分查找它们出现的次数.每次询问的 ...
- 【BZOJ】2724: [Violet 6]蒲公英
2724: [Violet 6]蒲公英 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 2900 Solved: 1031[Submit][Statu ...
- 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)
2724: [Violet 6]蒲公英 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1908 Solved: 678 Description In ...
- USACO 刷题记录bzoj
bzoj 1606: [Usaco2008 Dec]Hay For Sale 购买干草——背包 #include<cstdio> #include<cstring> #incl ...
随机推荐
- navicat 连接Oracle 报错:Cannot load OCI DLL, 126
1.64位win7 安装了oracle11g 使用Navicat for Oracle cannot load OCI DLL,126 解决方法:navicat 菜单中 -工具->选项-> ...
- sql的一个查询,情景:a表中存在的数据,且在b表中不存在 (not in,not exists
这里需要强调的是b表中关联字段的值是唯一的这种情况,并且b表尽量是列举类型的,意味着表比较小. ==================== 准备数据: 1. 建两个类似表,test1,test2,只有i ...
- jquery获取具有多个类class的标签内容
var tag = $('div.firstClassName.secondClassName.thirdClassName'); 注意空格
- python下安装lxml
首先在环境变量path中添加:C:\Python27\Scripts 然后打开cmd命令窗口,输入以下命令: easy_install virtualenv easy_install lxml 这样 ...
- RTSP server 在mips 上莫名其妙退出(PC上则无此问题)
http://blog.csdn.net/lubing20044793/article/details/38523701 早在这篇blog以前写过,在虚拟机下调试sn9c291时,USB 数据传输出了 ...
- No CPU/ABI system image available for this target 解决办法
经过了好几天的奋战,终于解决了这个问题.百度出来的方法真的是很垃圾了 最后用google,才解决出这个问题. 接下来,直入正题: 附上解决的链接:https://blog.csdn.net/doubl ...
- HO引擎近况20190110
前两天更新完,挺兴奋 趁着兴奋把虚拟机里面的MACOSX从10.12.6升级到了10.14 然后装XCODE,虽然比较熟悉了,但是架不住慢啊 先下载了一个DMG的镜像文件,用不了,转成ISO也不行 然 ...
- # 20155337《网络对抗》Exp6 信息搜集与漏洞扫描
20155337<网络对抗>Exp6 信息搜集与漏洞扫描 实践目标 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测 ...
- stm32f051 DMA需要注意的一点
STM32f051的DMA注意事项 问题说明:在使用ADC的DMA通道时,遇到了序列转换的乱序问题,我使用的是DMA循环模式,但是采集的数据却总是错的:第二个内存地址存放的是ADC序列转换中的第一个通 ...
- 最简单的XML用法
在传递数据时,XML和JSON是最常用的数据格式,SQL Server从很早的版本就开始支持XML格式,而对于JSON格式,SQL Server从2016版本开始支持.大多数数据库系统并没有升级到SQ ...