CF1110D Jongmah(DP)
题目大意:有 $n$ 个数,每个都不超过 $m$。一个三元组 $(a,b,c)$ 是合法的当且仅当 $a=b=c$ 或者 $a+1=b=c-1$。每个数只能用一次。问最多能凑出一个合法三元组。
$1\le n,m\le 10^6$。
首先我们发现对于一个 $x$,$(x,x+1,x+2)$ 不会出现超过 $2$ 次。因为 $3$ 个或以上的 $(x,x+1,x+2)$ 也可以被拆分成 $(x,x,x),(x+1,x+1,x+1),(x+2,x+2,x+2)$ 这几个三元组,而总个数不变。
那么就可以DP了。(smg???)
首先对序列开桶,设有 $cnt_i$ 个数是 $i$。
设 $dp_{i,j,k}$ 表示现在只考虑 $\le i$ 的数。其中我们规定以后还有 $j$ 个 $i$ 会被用到第二种二元组中,还有 $k$ 个 $i-1$ 会被用到第二种二元组中。
那么就可以知道,$0\le j,k\le 4$(具体原因下面会讲),$j$ 不能超过 $cnt_i$,$k$ 不能超过 $cnt_{i-1}$。
初始状态:$dp_{1,j,0}=(cnt_1-j)/3$。因为有 $j$ 个不能用到第一种三元组。
转移:$dp_{i,j,k}=\max(dp_{i-1,k+l,l}+l+(cnt_i-j-l)/3)$。
具体解释一下,我们枚举用多少个 $i-2$ 配成多少个 $(i-2,i-1,i)$(就是 $l$)。
$i-2$ 再怎么样,前面规定要用的也得用完了,所以转移前的状态第三维是 $l$。
转移后还有 $k$ 个 $i-1$ 要被用到第二种三元组,说明转移前规定了 $k+l$ 个。所以转移前的状态第二维是 $k+l$。
(这也解释了为什么要开到 $4$)
那么有 $l$ 个 $i$ 已经被用到第二种三元组,而有 $j$ 个 $i$ 被规定不能用到第一种三元组,所以至多可以多出 $(cnt_i-l-j)/3$ 个第一种三元组。
答案就是 $dp_{m,0,0}$。规定了以后要用的状态是无效的。
代码的话……由于我基本看着PBdalao的代码写的,所以相似度高达99%……不好意思放了……
CF1110D Jongmah(DP)的更多相关文章
- Codeforces 1110D Jongmah (DP)
题意:你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 解析:首先我们容易发现,我们 ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
随机推荐
- ASP.NET Core 3.0 实战:构建多版本 API 接口
第一次在博客写分享,请多多捧场,如有歧义请多多包含! 因为业务需求发展需要,所以API接口的变更升级是必不可少的事情,而原有的接口是不可能马上停止使用的.例如:Login接口为例,1.0版本之返回用户 ...
- XSS Challenges练习及解答
一个偶然的机会在知道创宇的技能表里看到了一个练习XSS的网站http://xss-quiz.int21h.jp,正好想研究这个,于是试着做了一下. 第一.二题是最简单的,直接在搜索框中输入以下代码就成 ...
- 20155217《网络对抗》Exp05 MSF基础应用
20155217<网络对抗>Exp05 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms ...
- 20155218《网络对抗》MSF基础应用
20155218<网络对抗>MSF基础应用 实验过程 1.一个主动攻击实践,如ms08_067; 首先使用 search ms08_067查询一下该漏洞: show target 查看可以 ...
- PostgreSQL基础知识与基本操作索引页
磨砺技术珠矶,践行数据之道,追求卓越价值 返回顶级页:PostgreSQL索引页 luckyjackgao@gmail.com 本页记录所有本人所写的PostgreSQL的基础知识和基本操作相关文摘和 ...
- Linux下的openvpn配置 与 easy-rsa3的证书生成
#注意:以下操作由服务端操作即可#PS:为什么我找不到var文件??============安装===============wget -O /etc/yum.repos.d/epel.repo ht ...
- 5.Xilinx RapidIO核例子工程源码分析
https://www.cnblogs.com/liujinggang/p/10091216.html 一.软件平台与硬件平台 软件平台: 操作系统:Windows 8.1 64-bit 开发套件:V ...
- android全屏
this.requestWindowFeature( Window.FEATURE_NO_TITLE ); this.getWindow().setFlags(WindowManager.Layout ...
- JavaScript实现选项卡(三种方法)
本文实例讲述了js选项卡的实现方法. 一.html代码: <div id="div1"> <input class="active" type ...
- servelt filter listener 的生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后 ...