吉哥系列故事——恨7不成妻

http://acm.hdu.edu.cn/showproblem.php?pid=4507

Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 6974    Accepted Submission(s): 2279

Problem Description
  单身!
  依然单身!
  吉哥依然单身!
  DS级码农吉哥依然单身!
  所以,他生平最恨情人节,不管是214还是77,他都讨厌!
  
  吉哥观察了214和77这两个数,发现:
  2+1+4=7
  7+7=7*2
  77=7*11
  最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!

  什么样的数和7有关呢?

  如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
  1、整数中某一位是7;
  2、整数的每一位加起来的和是7的整数倍;
  3、这个整数是7的整数倍;

  现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。

 
Input
输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。
 
Output
请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。
 
Sample Input
3
1 9
10 11
17 17
 
Sample Output
236
221
0
 
 #include<bits/stdc++.h>
using namespace std;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define sqr(x) ((x)*(x))
#define pb push_back
#define eb emplace_back
#define maxn 100005
#define eps 1e-8
#define pi acos(-1.0)
#define rep(k,i,j) for(int k=i;k<j;k++)
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<long long,int>pli;
typedef pair<int,char> pic;
typedef pair<pair<int,string>,pii> ppp;
typedef unsigned long long ull;
const long long MOD=1e9+;
/*#ifndef ONLINE_JUDGE
freopen("1.txt","r",stdin);
#endif */
struct DP{
ll cnt,sum,sqsum;
DP(ll a=,ll b=,ll c=):cnt(a),sum(b),sqsum(c){}
}dp[][][];
int a[];
ll fac[]; DP dfs(int pos,int aa,int bb,bool limit){
if(pos==-) return DP(aa!=&&bb!=,,);
if(!limit&&dp[pos][aa][bb].cnt!=-) return dp[pos][aa][bb];
int up=limit?a[pos]:;
DP ans;
for(int i=;i<=up;i++){
if(i!=){
DP tmp=dfs(pos-,(aa+i)%,(bb*+i)%,limit&&i==up);
ans.cnt=(ans.cnt+tmp.cnt)%MOD;
ans.sum=(ans.sum+(((fac[pos]*i)%MOD*tmp.cnt)%MOD)+tmp.sum)%MOD;
ans.sqsum=((ans.sqsum+tmp.sqsum+(*fac[pos]*i)%MOD*tmp.sum)%MOD)%MOD;
ans.sqsum=(ans.sqsum+((i*fac[pos]*i%MOD)*fac[pos]%MOD*tmp.cnt)%MOD)%MOD;
}
}
if(!limit) dp[pos][aa][bb]=ans;
return ans;
} ll solve(ll x){
int pos=;
while(x){
a[pos++]=x%;
x/=;
}
DP ans=dfs(pos-,,,);
return ans.sqsum;
} int main(){
#ifndef ONLINE_JUDGE
// freopen("1.txt","r",stdin);
#endif
std::ios::sync_with_stdio(false);
fac[]=;
for(int i=;i<;i++) fac[i]=(fac[i-]*)%MOD;
for(int i=;i<;i++){
for(int j=;j<;j++){
for(int k=;k<;k++){
dp[i][j][k].cnt=-;
}
}
}
int t;
cin>>t;
ll n,m;
while(t--){
cin>>n>>m;
ll ans=(solve(m)-solve(n-)+MOD)%MOD;
cout<<ans<<endl;
}
}

吉哥系列故事——恨7不成妻(数位DP)的更多相关文章

  1. hdu4507吉哥系列故事——恨7不成妻 (数位dp)

    Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: ...

  2. HDU-4507 吉哥系列故事——恨7不成妻 数位DP

    题意:给定区间[L, R]求区间内与7无关数的平方和.一个数当满足三个规则之一则认为与7有关:1.整数中某一位是7:2.整数的每一位加起来的和是7的整数倍:3.这个整数是7的整数倍: 分析:初看起来确 ...

  3. hdu-4507 吉哥系列故事——恨7不成妻 数位DP 状态转移分析/极限取模

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 求[L,R]中不满足任意条件的数的平方和mod 1e9+7. 条件: 1.整数中某一位是7:2.整数的每一 ...

  4. 【hdu4507】吉哥系列故事——恨7不成妻 数位dp

    题目描述 求 $[L,R]$ 内满足:数位中不包含7.数位之和不是7的倍数.本身不是7的倍数 的所有数的平方和 mod $10^9+7$ . 输入 输入数据的第一行是case数T(1 <= T ...

  5. hdu4507 吉哥系列故事——恨7不成妻[数位DP]

    这题面什么垃圾玩意儿 首先看到问题格式想到数位DP,但是求的是平方和.尝试用数位DP推出. 先尝试拼出和.设$f[len][sum][mod]$表示填到$len$位,已填位置数位和$sum$,数字取余 ...

  6. [HDU4507]吉哥系列故事——恨7不成妻

    [HDU4507]吉哥系列故事--恨7不成妻 试题描述 单身!依然单身!吉哥依然单身!DS级码农吉哥依然单身!所以,他生平最恨情人节,不管是214还是77,他都讨厌!吉哥观察了214和77这两个数,发 ...

  7. 吉哥系列故事——恨7不成妻(数位dp)

    吉哥系列故事--恨7不成妻 传送门 Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥 ...

  8. B - 吉哥系列故事——恨7不成妻

    单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: 2+1+4=7 7+7=72 77=71 ...

  9. HDU - 4507 - 吉哥系列故事——恨7不成妻(数位DP,数学)

    链接: https://vjudge.net/problem/HDU-4507 题意: 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都 ...

随机推荐

  1. awk的用法

    awk是什么 awk是一种优良的文本处理工具,同时也是一种脚本语言.awk的三位作者者已将它正式定义为“样式扫描和处理语言”.awk脚本允许您创建简短的程序,这些程序读取输入文件.为数据排序.处理数据 ...

  2. django管理后台添加admin账号

    直接用命令行添加即可:python manage.py createsuperuser # python manage.py createsuperuser Username (leave blank ...

  3. delphi 调用Webservice 引入wsdl 报错 document empty

    delphi 调用Webservice 引入wsdl 报错 document empty 直接引入wsdl 地址报错 document empty 解决办法:在浏览器里保存为xml文件,然后在开发环境 ...

  4. HTML学习-2标记标签-2

    三.表单元素 ①<form></form>表单标签,代表表单 主要属性:1.action提交到的页面.   2.method数据提交方式(get显示提交,有长度限制.post隐 ...

  5. too many connections 解决方法

    最近写javaee项目的时候,mysql报了too many connections的错误,百度的内容有一些有问题,所以我重新写一下我的解决方法. mysql -u root -p 回车输入密码进入m ...

  6. css3-animate

    常用动画设置: effect easing duration  effect: <select name="effects" id="effectTypes&quo ...

  7. copyOnWriteArray 并发包下的不安全(数组)集合

    copyOnWriteArray  记录一下 package java.util.concurrent;//你没有看错,是这个包 private transient volatile Object[] ...

  8. idea安装下载

    https://blog.csdn.net/qq_41983010/article/details/82562975

  9. Windows系统封装总结

    注:使用虚拟机或者实体机进行封装均可,实体机进行封装的成功率更高.虚拟机进行封装建议使用VMware,12版本.过高的版本容易造成封装失败 一.            Windows 10系统封装 1 ...

  10. 法门扫地僧总结vue面试题(部分来源网络)

    Front-End 前端开发工程师面试宝典!   (本文部分有转载,不定期更新!)             前言(README.md) 本仓库是我整理的前端常见面试题,大部分由我整理,其中个别部分参考 ...