1 题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

2 思路

这是一个动态规划题,每行的数据数对应行数,设F[m,n]表示到达第m行,第n列的最小代价,那么有

F[m,n]=min{F[i-1,j]+b,F[i-1,j-1]+b},其中b为第m行,第n列的数

那么边界值怎么处理呢?

我是设置正常值从1开始,0和最后一个值的后一位为IntMax。

这道题是我自己想出来的。

3 代码

①空间O(n^2),第一次想到的是这个

public int minimumTotal(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[lineNumber][lineNumber+2];
//F(a,b) = min{F(a-1,b-1)+b,F(a-1,b)+b} F(a,b)表示 第a行第b个的最小代价
//set F(a,0) to MAX, F(a,B) to MAX , where B = triangle.get(a).size()+1, 0<=a<lineNumber;
//set the initial value F[0][1] = triangle.get(0).get(0);
for (int i = 0; i < lineNumber; i++) {
F[i][0] = Integer.MAX_VALUE;
int lineSize = triangle.get(i).size() + 1;
F[i][lineSize] = Integer.MAX_VALUE;
}
// long former = 0;
//dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[i][j] = Math.min(F[i-1][j-1], F[i-1][j]) + row.get(j-1);
}
} int min = F[lineNumber-1][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber-1][i];
if(temp < min){
min = temp;
}
} return min;
}

②空间o(n),改进了一下

public int minimumTotal2(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[2][lineNumber+2];
//F(a,b) = min{F(a-1,b-1),F(a-1,b)} + b; F(a,b)represent the minValue of the a row b list //set the initial value and the boundary value
F[0][0] = Integer.MAX_VALUE;
F[0][1] = triangle.get(0).get(0);
F[0][2] = Integer.MAX_VALUE; //dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[1][j] = Math.min(F[0][j-1], F[0][j]) + row.get(j-1);
}
F[1][0] = Integer.MAX_VALUE;
F[1][rowSize+1] = Integer.MAX_VALUE;
for (int j = 0; j <= rowSize+1; j++) {
F[0][j] = F[1][j];
}
} int min = F[lineNumber > 1 ? 1 : 0][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber > 1 ? 1 : 0][i];
if(temp < min){
min = temp;
}
} return min;
}

[leetcode 120]triangle 空间O(n)算法的更多相关文章

  1. LeetCode 120. Triangle (三角形)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  2. LeetCode 120. Triangle (三角形最小路径和)详解

    题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  3. LeetCode 120. Triangle三角形最小路径和 (C++)

    题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...

  4. LeetCode - 120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  5. leetcode 120 Triangle ----- java

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  6. [LeetCode] 120. Triangle _Medium tag: Dynamic Programming

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. Java for LeetCode 120 Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  8. [leetcode] 120. Triangle (Medium)

    原题 思路: dp,从下往上依次取得最小的,取到最上面的,就是一条最小的路径. class Solution { public: int minimumTotal(vector<vector&l ...

  9. [leetcode]120.Triangle三角矩阵从顶到底的最小路径和

    Given a triangle, find the minimum path sum from top to bottom.Each step you may move to adjacent nu ...

随机推荐

  1. netstat 查看端口命令

    查看特定端口是否启动 netstat -lnp |

  2. HTTP 1.0 Status Code Definitions

    part of Hypertext Transfer Protocol -- HTTP/1.1RFC 2616 Fielding, et al. 10 Status Code Definitions ...

  3. Jquery中的$.cookie()方法

    jquery.cookie中的操作: jquery.cookie.js是一个基于jquery的插件,点击下载! 创建一个会话cookie: $.cookie(‘cookieName’,'cookieV ...

  4. 含有选择器的 bootstrap菜单

    var menu = new BootstrapMenu('#jsmind_container jmnode:not(.root)', { actions: [{ name: '展开节点', onCl ...

  5. HTTP协议是什么

    1.http全称Hypertext Trsnsfer Protocol超文本传输协议 2.最初发明是用来在浏览器和web服务器之间传输超文本信息的 3.泛义上属于应用层的协议   ,很多其他应用(比如 ...

  6. 关于Spring父容器和SpringMvc子容器

    在SSM项目中,会有SpringMvc容器(子容器)和Spring容器(父容器) 一共2个容器 基本规则: 子容器可以访问父容器的bean,父容器不能访问子容器的bean. 当<context: ...

  7. 20155312 2016-2017-2 《Java程序设计》第九周学习总结

    20155312 2016-2017-2 <Java程序设计>第九周学习总结 课堂内容总结 两个类有公用的东西放在父类里. 面向对象的三要素 封装 继承 多态:用父类声明引用,子类生成对象 ...

  8. python学习 day15 (3月20日)----time

    # '2019-03-20 10:40:00'#这个时间向后推一个月 f1 = time.strptime('2019-03-20 10:40','%Y-%m-%d %H:%M') # 把字符串时间转 ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 A Hard to prepare

    https://nanti.jisuanke.com/t/31453 题目大意: 有n个人坐成一圈,然后有\(2^k\)种颜色可以分发给每个人,每个人可以收到相同的颜色,但是相邻两个人的颜色标号同或不 ...

  10. boost-实用工具:noncopyable、optional、assign

    1.noncopyable 让一个类从noncopyable继承可以实现禁止对象的复制,使用需要包含头文件"boost/noncopyable.hpp"或"boost/u ...