1 题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

2 思路

这是一个动态规划题,每行的数据数对应行数,设F[m,n]表示到达第m行,第n列的最小代价,那么有

F[m,n]=min{F[i-1,j]+b,F[i-1,j-1]+b},其中b为第m行,第n列的数

那么边界值怎么处理呢?

我是设置正常值从1开始,0和最后一个值的后一位为IntMax。

这道题是我自己想出来的。

3 代码

①空间O(n^2),第一次想到的是这个

public int minimumTotal(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[lineNumber][lineNumber+2];
//F(a,b) = min{F(a-1,b-1)+b,F(a-1,b)+b} F(a,b)表示 第a行第b个的最小代价
//set F(a,0) to MAX, F(a,B) to MAX , where B = triangle.get(a).size()+1, 0<=a<lineNumber;
//set the initial value F[0][1] = triangle.get(0).get(0);
for (int i = 0; i < lineNumber; i++) {
F[i][0] = Integer.MAX_VALUE;
int lineSize = triangle.get(i).size() + 1;
F[i][lineSize] = Integer.MAX_VALUE;
}
// long former = 0;
//dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[i][j] = Math.min(F[i-1][j-1], F[i-1][j]) + row.get(j-1);
}
} int min = F[lineNumber-1][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber-1][i];
if(temp < min){
min = temp;
}
} return min;
}

②空间o(n),改进了一下

public int minimumTotal2(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[2][lineNumber+2];
//F(a,b) = min{F(a-1,b-1),F(a-1,b)} + b; F(a,b)represent the minValue of the a row b list //set the initial value and the boundary value
F[0][0] = Integer.MAX_VALUE;
F[0][1] = triangle.get(0).get(0);
F[0][2] = Integer.MAX_VALUE; //dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[1][j] = Math.min(F[0][j-1], F[0][j]) + row.get(j-1);
}
F[1][0] = Integer.MAX_VALUE;
F[1][rowSize+1] = Integer.MAX_VALUE;
for (int j = 0; j <= rowSize+1; j++) {
F[0][j] = F[1][j];
}
} int min = F[lineNumber > 1 ? 1 : 0][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber > 1 ? 1 : 0][i];
if(temp < min){
min = temp;
}
} return min;
}

[leetcode 120]triangle 空间O(n)算法的更多相关文章

  1. LeetCode 120. Triangle (三角形)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  2. LeetCode 120. Triangle (三角形最小路径和)详解

    题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  3. LeetCode 120. Triangle三角形最小路径和 (C++)

    题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...

  4. LeetCode - 120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  5. leetcode 120 Triangle ----- java

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  6. [LeetCode] 120. Triangle _Medium tag: Dynamic Programming

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. Java for LeetCode 120 Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  8. [leetcode] 120. Triangle (Medium)

    原题 思路: dp,从下往上依次取得最小的,取到最上面的,就是一条最小的路径. class Solution { public: int minimumTotal(vector<vector&l ...

  9. [leetcode]120.Triangle三角矩阵从顶到底的最小路径和

    Given a triangle, find the minimum path sum from top to bottom.Each step you may move to adjacent nu ...

随机推荐

  1. netty1 快速入门

    Netty是一个高性能.异步事件驱动的网路通信框架 ,由于精力有限,本人并没有对其源 码做了特别细致的研究.如果下面的内容有错误或不严谨的地方,也请大家指正和谅解. Netty的线程模型是Reacto ...

  2. CXF wsdl2java (转载)

    2011-03-28 14:27 9735人阅读 评论(2) 收藏 举报 servicewebserviceinterfacejavastringserver CXF wsdl2Java 一.  简介 ...

  3. 清华大学 TUNA 协会

    https://tuna.moe/ 技术,实力,优越感,环境..,镜像

  4. Web Api 2 认证与授权 2

    HTTP Message Handler 在 Web Api 2 认证与授权 中讲解了几种实现机制,本篇就详细讲解 Message Handler 的实现方式 关于 Message Handler 在 ...

  5. CRC在线计算工具

    http://www.lammertbies.nl/comm/info/crc-calculation.html

  6. 20155312 2016-2017-2 《Java程序设计》第七周学习总结

    20155312 2016-2017-2 <Java程序设计>第七周学习总结 课堂内容总结 read()每次读入一个字节. eg:short2个字节,2=0x0201,读入后要0x < ...

  7. Django的学习(一)————初入django

    一.基本指令 1.项目的建立: Django的项目建立,进入目录,打开cmd输入 django-admin startproject[项目名称],注意如果是在其他文件下把项目设计成资源文件. 2.Ap ...

  8. node 报错:Uncaught Error: Cannot find module "!!../../../node_modules/extract-webpack-plugin/loader.js

    问题出在缺少less和less-loader  因为以上模块使用了less解析. 解决方法在dependencies添加 "less": "^2.7.1", & ...

  9. centos 7 禁止root登录及更改ssh端口号

    vim /etc/ssh/sshd_config PermitRootLogin yes => PermitRootLogin no systemctl restart sshd.service ...

  10. Codeforces 1093 简要题解

    文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 GGG题手速慢了没有在比赛的时候码出来233,FFF题居然没想出来? 五道题滚粗. 先谈谈其他几道题. A题 传送门 不小心看错题 直接看奇 ...