/*
dp维护整体的概率, 每次相当于回退一格然后重新dp一格 */
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#define ll long long
#define M 202
#define mmp make_pair
using namespace std;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const int mod = 1000000007;
int poww(int a, int b)
{
int ans = 1, tmp = a;
for(; b; b >>= 1, tmp = 1ll * tmp * tmp % mod) if(b & 1) ans = 1ll * ans * tmp % mod;
return ans;
}
void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
}
struct Note
{
int a, g, p;
bool operator < (const Note &b) const
{
return this->a < b.a;
}
}note[M][M], sta[M * M];
int m[M], q[M], n, v[M], tp;
int f[M], g[M], d[M], ans[M];
void work(int x)
{
if(x == 0)
{
for(int i = 0; i <= n; i++) g[i] = g[i + 1];
return;
}
int y = (1 + mod - x), invx = poww(x, mod - 2);
memset(d, 0, sizeof(d));
for(int i = 0; i <= n; i++)
{
d[i] = 1ll * g[i] * invx % mod;
add(g[i + 1], -1ll * d[i] * y % mod);
}
for(int i = 0; i <= n; i++) g[i] = d[i]; } int main()
{
n = read();
int inv = poww(100 ,mod - 2);
for(int i = 1; i <= n; i++)
{
m[i] = read();
for(int j = 1; j <= m[i]; j++)
{
note[i][j].a = read(), note[i][j].g = 1ll * (100 - read()) * inv % mod, note[i][j].p = read();
add(q[i], note[i][j].p);
sta[++tp] = (Note) {note[i][j].a, i, j};
}
int inv = poww(q[i], mod - 2);
for(int j = 1; j <= m[i]; j++) note[i][j].p = 1ll * note[i][j].p * inv % mod;
}
sort(sta + 1, sta + tp + 1);
for(int i = 1; i <= n; i++) v[i] = read();
g[n] = 1;
for(int now = 1; now <= tp; now++)
{
int i = sta[now].g, j = sta[now].p;
work(f[i]);
for(int a = 0; a <= n; a++) add(ans[i], 1ll * note[i][j].p * v[a + 1] % mod * g[a] % mod * note[i][j].g % mod);
add(f[i], note[i][j].p);
for(int a = n; a >= 0; a--)
{
g[a] = 1ll * g[a] * f[i] % mod;
if(a) add(g[a], 1ll * (1 + mod - f[i]) * g[a - 1] % mod);
}
}
for(int i = 1; i <= n; i++) cout << ans[i] << "\n";
return 0;
}

十二省NOI“省选”联考模测(第二场)A抽卡大赛的更多相关文章

  1. 51nod 1850 抽卡大赛 (十二省联考模测) DP

    O(n4)O(n^4)O(n4)的DP很好想,但是过不了.来看看O(n3)O(n^3)O(n3)的把. Freopen的博客 CODE #include <cstdio> #include ...

  2. 51nod“省选”模测第二场 C 小朋友的笑话(线段树 set)

    题意 题目链接 Sol 直接拿set维护\(li\)连续段.因为set内的区间互不相交,而且每个线段会被至多加入删除一次,所以复杂度是对的. #include<bits/stdc++.h> ...

  3. 51nod“省选”模测第二场 B 异或约数和(数论分块)

    题意 题目链接 Sol 这题是来搞笑的吧.. 考虑一个数的贡献是\(O(\frac{N}{i})\) 直接数论分块. #include<bits/stdc++.h> #define Pai ...

  4. 题解 P6622 [省选联考 2020 A/B 卷] 信号传递

    洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...

  5. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  6. [省选联考 2021 A 卷] 矩阵游戏

    很巧妙的一个构造. 我是没有想到的. 自己的思维能力可能还是不足. 考虑先满足\(b\)对\(a\)的限制,把\(a\)的第一行和第一列设\(0\),推出这个\(a\). 接下来考虑对这个\(a\), ...

  7. [省选联考 2021 A/B 卷] 卡牌游戏

    垃圾福建垫底选手来看看这题. 大家怎么都写带 \(log\) 的. 我来说一个线性做法好了. 那么我们考虑枚举 \(k\) 作为翻转完的最小值. 那么构造出一个满足条件的操作,我们在 \(a_i\) ...

  8. luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)

    luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...

  9. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

随机推荐

  1. web.xml启动spring详解

    https://blog.csdn.net/king_cannon_fodder/article/details/79328576 详细介绍:https://www.cnblogs.com/wkrbk ...

  2. C语言struct小知识

    1.C语言里的struct是不能包含成员函数的,只能有数据成员2.C语言struct定义变量只能用一下两种方式:struct { ... } x, y, z;struct point pt;直接poi ...

  3. MD5 SHA1 SHA256 SHA512 SHA1WithRSA 的区别

    MD5 SHA1 SHA256 SHA512 这4种本质都是摘要函数,不通在于长度  MD5 是 128 位,SHA1  是 160 位 ,SHA256  是 256 位,SHA512 是512 位. ...

  4. 使用yum更新时不升级Linux内核的方法

    RedHat/CentOS/Fedora使用 yum update 更新时,默认会 升级内核 .但有些服务器硬件(特别是组装的机器)在升级内核后,新的内核可能会认不出某些硬件,要重新安装驱动,很麻烦. ...

  5. 如何使用redis计数器防止并发请求

    需求描述 最近项目中有个需求,短信发送的并发请求问题:业务需求是需要限制一个号码一分钟内只能获取一次随机码,之前的实现是短信发送请求过来后,先去数据库查询发送记录,根据上一次的短信发送时间和当前时间比 ...

  6. java-http通信调用与创建

    java项目使用HTTP的请求.主要有两种方式:①使用JDK自带的java.net包下的HttpURLConnection方式. ②使用apache的HttpClient方式. 一.使用JDK自带的j ...

  7. Feign的使用

    一.Feign实现应用间的通信 声明式REST客户端(伪RPC),采用基于接口的注解.本质上是Http客户端,Http远程调用. 1. 在Order工程中的pom文件增加 <dependency ...

  8. NLP自然语言处理中的hanlp分词实例

    本篇分享的依然是关于hanlp的分词使用,文章内容分享自 gladosAI 的博客,本篇文章中提出了一个问题,hanlp分词影响了实验判断结果.为何会如此,不妨一起学习一下 gladosAI 的这篇文 ...

  9. SpringMVC和Struts是线程安全的吗?为什么?

    线程不安全的.(其实我觉得回答为:存在线程安全问题 这样比较好点) 原因如下: 第一点,先理解为何线程不安全 1 struts1的action是单例的,所以存在线程安全问题(struts2是多例的,不 ...

  10. [转]在Eclipse中搭建Python开发环境

    在Eclipse中搭建Python开发环境 来自: http://hi.baidu.com/hqwfreefly/blog/item/2543181d0afd9604314e150e.html 前言 ...