朴素贝叶斯算法--python实现
朴素贝叶斯算法要理解一下基础: 【朴素:特征条件独立 贝叶斯:基于贝叶斯定理】
# 极大似然估计 朴素贝叶斯算法
#coding:utf-8
# 极大似然估计 朴素贝叶斯算法
import pandas as pd
import numpy as np class NaiveBayes(object):
def getTrainSet(self):
dataSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv')
dataSetNP = np.array(dataSet) #将数据由dataframe类型转换为数组类型
trainData = dataSetNP[:,0:dataSetNP.shape[1]-1] #训练数据x1,x2
labels = dataSetNP[:,dataSetNP.shape[1]-1] #训练数据所对应的所属类型Y
return trainData, labels def classify(self, trainData, labels, features):
#求labels中每个label的先验概率
labels = list(labels) #转换为list类型
P_y = {} #存入label的概率
for label in labels:
P_y[label] = labels.count(label)/float(len(labels)) # p = count(y) / count(Y) #求label与feature同时发生的概率
P_xy = {}
for y in P_y.keys():
y_index = [i for i, label in enumerate(labels) if label == y] # labels中出现y值的所有数值的下标索引
for j in range(len(features)): # features[0] 在trainData[:,0]中出现的值的所有下标索引
x_index = [i for i, feature in enumerate(trainData[:,j]) if feature == features[j]]
xy_count = len(set(x_index) & set(y_index)) # set(x_index)&set(y_index)列出两个表相同的元素
pkey = str(features[j]) + '*' + str(y)
P_xy[pkey] = xy_count / float(len(labels)) #求条件概率
P = {}
for y in P_y.keys():
for x in features:
pkey = str(x) + '|' + str(y)
P[pkey] = P_xy[str(x)+'*'+str(y)] / float(P_y[y]) #P[X1/Y] = P[X1Y]/P[Y] #求[2,'S']所属类别
F = {} #[2,'S']属于各个类别的概率
for y in P_y:
F[y] = P_y[y]
for x in features:
F[y] = F[y]*P[str(x)+'|'+str(y)] #P[y/X] = P[X/y]*P[y]/P[X],分母相等,比较分子即可,所以有F=P[X/y]*P[y]=P[x1/Y]*P[x2/Y]*P[y] features_label = max(F, key=F.get) #概率最大值对应的类别
return features_label if __name__ == '__main__':
nb = NaiveBayes()
# 训练数据
trainData, labels = nb.getTrainSet()
# x1,x2
features = [2,'S']
# 该特征应属于哪一类
result = nb.classify(trainData, labels, features)
print features,'属于',result
#朴素贝叶斯算法 贝叶斯估计, λ=1 K=2, S=3; λ=1 拉普拉斯平滑
#coding:utf-8
#朴素贝叶斯算法 贝叶斯估计, λ=1 K=2, S=3; λ=1 拉普拉斯平滑
import pandas as pd
import numpy as np class NavieBayesB(object):
def __init__(self):
self.A = 1 # 即λ=1
self.K = 2
self.S = 3 def getTrainSet(self):
trainSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv')
trainSetNP = np.array(trainSet) #由dataframe类型转换为数组类型
trainData = trainSetNP[:,0:trainSetNP.shape[1]-1] #训练数据x1,x2
labels = trainSetNP[:,trainSetNP.shape[1]-1] #训练数据所对应的所属类型Y
return trainData, labels def classify(self, trainData, labels, features):
labels = list(labels) #转换为list类型
#求先验概率
P_y = {}
for label in labels:
P_y[label] = (labels.count(label) + self.A) / float(len(labels) + self.K*self.A) #求条件概率
P = {}
for y in P_y.keys():
y_index = [i for i, label in enumerate(labels) if label == y] # y在labels中的所有下标
y_count = labels.count(y) # y在labels中出现的次数
for j in range(len(features)):
pkey = str(features[j]) + '|' + str(y)
x_index = [i for i, x in enumerate(trainData[:,j]) if x == features[j]] # x在trainData[:,j]中的所有下标
xy_count = len(set(x_index) & set(y_index)) #x y同时出现的次数
P[pkey] = (xy_count + self.A) / float(y_count + self.S*self.A) #条件概率 #features所属类
F = {}
for y in P_y.keys():
F[y] = P_y[y]
for x in features:
F[y] = F[y] * P[str(x)+'|'+str(y)] features_y = max(F, key=F.get) #概率最大值对应的类别
return features_y if __name__ == '__main__':
nb = NavieBayesB()
# 训练数据
trainData, labels = nb.getTrainSet()
# x1,x2
features = [2,'S']
# 该特征应属于哪一类
result = nb.classify(trainData, labels, features)
print features,'属于',result
朴素贝叶斯算法--python实现的更多相关文章
- 朴素贝叶斯算法python实现
朴素贝叶斯是一种十分简单的分类算法,称其朴素是因为其思想基础的简单性,就文本分类而言,他认为词袋中的两两词之间的关系是相互独立的,即一个对象的特征向量中的每个维度都是互相独立的.这是朴素贝叶斯理论的思 ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 朴素贝叶斯算法的python实现方法
朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...
- 朴素贝叶斯算法的python实现
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...
- 机器学习:python中如何使用朴素贝叶斯算法
这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- 朴素贝叶斯算法下的情感分析——C#编程实现
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...
随机推荐
- python的面向对象-实例(对象)的相关知识、实例化
1.对象就是实例,什么是实例 类运行的过程就是实例化的过程,实例化产生的结果就是产生了一个实例 class的牛逼之处就是不用手动的return,他会加载完函数之后,自动return __init__ ...
- 在线Python学习网站
目前我们使用的Python集成环境是Anaconda3,然后使用Jupyter Notebook和Spyder两个开发环境 Goole推出了在线的开发环境,在线网站: https://colab.re ...
- angularJs的各种服务和指令的使用场景
$location服务,获取页面跳转带的参数 比如说页面是这样的 localhost:9102/admin/goods.html#?id=123 如何获取这个id=123的值呢?????(注意: ...
- POJ - 1094 Sorting It All Out(拓扑排序)
https://vjudge.net/problem/POJ-1094 题意 对于N个大写字母,给定它们的一些关系,要求判断出经过多少个关系之后可以确定它们的排序或者排序存在冲突,或者所有的偏序关系用 ...
- 第8月第22天 python scrapy
1. cd /Users/temp/Downloads/LagouSpider-master ls ls ls lagou/settings.py cat lagou/settings.py ls p ...
- 判断线段之间的关系(D - Intersecting Lines POJ - 1269 )
题目链接:https://vjudge.net/contest/276358#problem/D 题目大意:每一次给你两条直线,然后问你这两条直线的关系(平行,共线,相交(输出交点)). 具体思路:先 ...
- PCA和白化练习之处理二维数据
在很多情况下,我们要处理的数据的维度很高,需要提取主要的特征进行分析这就是PCA(主成分分析),白化是为了减少各个特征之间的冗余,因为在许多自然数据中,各个特征之间往往存在着一种关联,为了减少特征之间 ...
- 用代码截图去理解MVC原理
[概述] 看了蒋金楠先生的<Asp.Net Mvc框架揭密>,这本书详细地讲解了mvc的原理,很深奥也很复杂,看了几遍才将就明白了一点.他在第一章用了一个他自己写的mvc框架作为例子,代码 ...
- python3之SQLAlchemy
1.SQLAlchemy介绍 SQLAlchemy是Python SQL工具包和对象关系映射器,为应用程序开发人员提供了SQL的全部功能和灵活性. 它提供了一整套众所周知的企业级持久性模式,专为高效和 ...
- python中open函数的用法
用法如下: name = open('errname.txt','w')name.readline()name.close() 1.看下第一行的代码 用来访问磁盘中存放的文件,可以进行读写等操作,例如 ...