hdu 5195 线段树
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABIgAAABeCAIAAADHZri1AAATWklEQVR4nO3dvU4jTRaA4b2nvgNzBwgj0pH2BpAsERBNsKklayQCpEm+0IGlCUjINrS0DgjQRA65BMds4HFTrvNTp7ob2jDvE4zs7vqvMl1n2jT/egUAAAAAjOpfYzcAAAAAAP52BGYAAAAAMDICMwAAAAAYGYEZAAAAAIyMwAwAAAAARkZgBgAAAAAjIzADAAAAgJERmAEAAADAyMzA7G52eTm7e319fXl6OGsUNz8eXl9fn3/dpQfPLm7+M7sUac8enl5eX18fftzsc72+vr6+vtxcnN39et5XcXFx85JUvT+eevhxczm7e3l6OGsu83MAAAAA8Jl5d8za2ExqQ6znX3dnh5gqfZ3FWse5nmXo1rr79bxPkMVmh8Ds6YnYDAAAAMDXogdmx7e2vATyjtmTuMN2uNP1lubl9dW5Y6Ye2QdmfbsLAAAAAKenEJg9/LhRv8Ho3DF7Oo6pnn/dtQFVMd7LZFFfFgG+lAsAAAAAgE+gHJil96nS484ds4uLm5fDDTE1MJPxnry3loZw+4PcMQMAAADwJfUNzKSXt8Ds4uHpJQvM9sHbP2/Zny8PvzCW1nU3u0zKf75smouLC26UAQAAAPiSegVm6gMb//PjhwzMsvtgDxWB2Z8HgezPPvy4aXjyBwAAAICvZag7Zm/x1f6O2X9/3e2fkl/7VcZ9ykNg9nyZxHL7s/svT8rn6QMAAADAJ9X34R8vTw//nt0lT8D/E4w1TXP36783F2eluM65Y/ZP+9jG7Cx/zQwAAADAV1J3x0wmODyVsY2vni+PfxMsLaEyMDv6HTYelw8AAADgq+r4d8wOgdPLzcXZ/rEckV/9Cn6VsT3L9xUBAAAA/A3qArMkoDp7eHpJ/gz0y82FfA5I6+yfX/+cJbGWWv7+nlhbpvpkkbTMhyce0AgAAADgK9ADMwAAAADAhyEwAwAAAICREZgBAAAAwMgIzAAAAABgZHpg9j8AAAAAQG99A7MdAAAAAKAHAjMAAAAAGBmBGQAAAACMjMAMAAAAAEZGYAYAAAAAIyMwAwAAAICREZgBAAAAwMgIzAAAAABgZARmAAAAADAyAjMAAAAAGBmBGQAAAACM7HQDs6ZpeiYoJmtKnHKsYru1KpIrWLJfS7GP8QGpbZifrMOADFvp/nVVvX0aKavOzlZNgd+wSGnvMfXBOY0P4+Aph1qTm+Vicj7bBhs3sM20mazWFZX7a+8DvHelnT/Fg38S402Szejci6p6q5K9d1FVo9S/OgA4QacSmMkLnnwhs0SKDZ71f+LHrwdps50LeWTPF9ko96zFSdChyz6nqe93ua1dAHJA4sMbbExxTp2S40Nde2rwqa8qpDggVrJ47f3T2Ok319eLYlHvaTs7/7YJp451qpduy3vA2tMXsg0f9kmMp5eVFtd/pPzgZ8R5nVYX+fT1nNwOAwUAX8mpBGYtee3Mzvpqk6npg2fV65P/tipZ/KpjlRYZPSujMyDd2ulkjw9vlab0H89tgraiqjnt0DY1rywnMtSRefRLsBrWf+rjc1q1eIqD5qtKFu/s4vpb1Q2r97BZLmbzVTBxh/HvxlrY711pO49ZdWrHi4vKqiXekshKa5uaNt5K5vci2E6r484gOFm6fabiPqAKADgFJx2YBS8qnc+m1z/r7E67Glnp5XVCvchFku3Epdq5CDWxq3UwY3FArFZ1m7Lg8NbyC7GmwJkI+fb9dgORsZLHIxMRKUEmrp364JyqzS62319mTh87n3Wbt/k26JcY1+t1p3wVzRjk89WtFudTNnjVcvV2qLf2c9QhsVxUzihlBzt/QmUWp7VqwyLNCwo2GAD+BqcSmFkXp2Ji9Yd48UIokzmFyGRqaWriYhusYq3s1sG0/dYY1l6qnVGNvLZq9Iv1hzdIjkBxMLOhs3pRLDPStsiYFNNYHfEbFimh/9RXzak6nrKd6hCpHYmvNzV7Vo7fQXGrajs7nzTN9PDFws307XXIav7duf+2uJ42TbNYbna73Wo+myZfoYzfuIuPRmu7Xk2apq1us1xM3W9vWlPQHH+CrIoOv7DX5dfn4pVaS0X9LDhpFtfT5q2d29n5edbmyIDLNGpKtWtOFU7Vka5lGYuT6PfUWb1+UWqDnZQA8HmdUGCWvfWvlH4J6YVEFqKeVav2S7ZabvXC769TVJs92HGrbUXBAVErdfoVaXP2umcXrMKtYU9HuNjTPm1Ta6/K5TTMOuWTydS8xXo7z6mfeFczp3KK/SrUcShmTF+v5rM0MFvNv6/W69n5ZL/77PRQEPPe12a5WCw3hx3tdnY+SQtfXE/3lfo6reHt9+vv6/VqcggyF9fT4Dcns4pKa377/fr79hCPbZaL5rCPr1L8oA34SdxPSjsg22SUnLqswtPVGPnoWZ+X4utI13bHn5FdaRL9nvqrN9Ieq/tW4tjaBoDT8u6BWVPSJpMZ5fHsiqUWtStdrqyz1nXFr0XmShspS8vKjDRYfau2QX0ruxCZBWdAgq+tNqsVFYc32AWnIvWsNXRWG+RbtTS/xqG6YLWnmMU/3n/qR5nTtnC/KHWUnDn1Xx+HQ5vr68W2UwCT2q5X37SbCT/n8+1u20Z92UNHshDRkk5BNh2W4y31rupGljqeVo3b9erncpNGs9n9Q2dVZGnSebdmfIiFdxRJ7sSNIFmaU3jWTn/o/K4VXwe6ppx1lk2xp/7qjTTGmlmZ3vo4A8DpO6E7ZtlF0bmEFw8G917OD/RiIbKF/gVDTVasK751UOut2WHox52+RxoWqSg4vN04Dcha61cXGV51XpwmFUvLmmoNb9WgfczUx+e02P14pU4HizVGZkE9Lu9THQcw6g2fzdTpzxsl+Emjvn0Yk9b7ToHZvrb0NmBT+n6mNVORGtNo9ud8ng6BOuOy3vTtLjy5kWTqwksiye3sfNI2XharZlePyGaoZ63FbJGdqnprTWKwp87qtaq2TvnLyZpKADh9pxKYteSPVPXHbvCq4x/MLiTFlliNsd52vhBWlew02Lm+FsfN72m8m1VbhOLw1vKzt9f1tkmyebIof2XGm5TtKpzJipSmlllMr1bXf+rjcxrPFTm1G+6HQ/C4CMzeApjDNnQ7n/90GixZd8x2xzdkFtfXm+NT7xeYpVvqfRusjbVanVq74e3u03a9+i56VGytnPfg5Hb+JCaR5J/Gp/GkVZrar0F+FnX4fMXfOjNY7Kmzeq0s2Vl1Zq3GRBY2AJyazxqYORmzvHJz5lyA4xs468ggF0I/TSRxhxLU9H7f/eNBVcPbp/BI1VV9DG65sjRyS6FWXZwsp83FLMXjPac+PqeNS83V84MQ/OGQvpVZ2gQiHHoLzBbX08n5bB0LYBLe8xXbp27IoCXyO2bBn05SEphtpk0zm69W83mkV/E5aqtqH54h9+7Bj1j22lpOQ30S28BsNZ81zXSz28yTqQn+lBj2Z1Ht8eLbbBC6/Tx0Vq/TVDWBM18A8KmddGDm75asjFYCq4rivlA9aNWVNcPKWNsjv1O1F3snfWRAgrXL6tQJrRreWsGVIJsaKaS2bcXBV1NG5n2QpTLg1PefU6dH1muncD+Ln9JPL59PuH+uYNM0i+Vy2jTFb/2JAn+6v761f+pjIx6coDwMUIoPo7Saz5qmaZrpcrlokic0FmuUy6A4pM2fAax+7MdOW3vWIhnuk/jnu6mz+c/Z+ST7Dmrws/lOP4t6ft6tiVNbGOiptXpDn7U+qxcAPosTCsziF2/1QhvJK686fntksuy1vBRFLh5qRqt2K4uTd+f21L8Mq1X4Z+NbDf+F2k6nPRH+KpJVFycizduteU6BMkFwstKDVsP8Nn/A1O8Cc6o2suqzo86g1R6n6uAsdHggvm+5XHbItV2vzkuPf/QHof9nLSvNX4cD1iXLz15Xrd5Oa6DcHj+7ukSDc+Q3pttQWxXJemWCDgPlj7NMls3Ruy4nAPhgJxSYAcCns5rPut3b+WJtAAAAPRGYAUAf29n5txGjIudhIQAA4BMhMAOAnrwndnzdqgEAwJAIzAAAAABgZARmAAAAADAyAjMAAAAAGBmBGQAAAACM7BQDs5P6syTv0Ziqv+vSP1l/6p+mqf17PiOy/i5QzwL9BPFR6tyw2j9eVPzTvbUrc6iVnKYfZEWlf+Yokqxnml3lGvMXQ9Xnq+ps7YLpVlqHkntmAQDga3j3wCzbXkQ2HCd1YR5kj5j1t7hrHGTHo+7wsmH3Z0dtp6z3pOZL5W+anYGyVmlk8ONZnOrU2SmW6dS1WS4a4w8id+h7ZOr9NMXqunEaaZ3yJyhYY7c15tdVHMD4qeKCqWqbtTyKPa0dAQAA/hIfdMcsvSTLg7sTuyfzTo3JBkFuR7rtaSJt89ssz8q2qbVb2R9vm9tHp8Iav++vru5/9yjAGTorsXUqPvLdpsaaCP9fv8zMaj6ban/zShbor5l4mvcuoS0nODvB1/HSguuhT0f89JFy5EGnEKfMYrKqnqpv4yUAAPDFjBOYNfa2coCr8uNtsv04BAi/76+Odyq3j7/vr5p0z5+/H3qLkG2PiskGPFuVSyZu56vRNrJZ+t/3V29hmToXyanj8T6apKMyesR5VjuzvlicAiOV+rnU8ZQJ/H9rurCdnU9m85Xfcn99OtVVNsbsdX9OsdaYF+fCT5nNiLrYug1IvDF+I61my8aobYgk69NTv1gAAP4GJx2YdbxCP962+/3f91fKpr69oZOGYiIsC+4si4IbmmCl/XdpxbP+FqrQpKOwzJuLx9ur+8f0bpg+V3kpldqmqitQdkFNLMtUX6c1OtSGWTXKNMVPkHN8t9tMD79gtrieNse/bCanVTbGmfriR8MazOKaD7Iab/Wif4278MopLiS/YXLlRJKpo1FsnjMOaoP9NP7BtM3W0AEA8PcY4XfMdmITkyZ23kYdbePlbbCj79m1cUS297c2ah2aVNx+VVVq7c/8s87uTT0iK7Vamx3MQyhzLh5vr+5/p99TdO+LZeFeccTS0YgsquJAWdn9+XLaFkzvN8wq3zq+Xa8mzWS13i6up4vlY3v3TM5s1gCrcOt1vEnBIQryl3Ft7cH1EFk5wYbVrhwnpTo1Vvlyxv1epG979lSWYw2y2k0AAL6SE7pjVtwHOCmPHAcHWaggfv3p8bZpbu+PNv5t8/z9lrMnS1Oq+wy1+8FKZbFOXVZ1MoFMadVlT5O4tWXNxT4uS36DrA292q8zHk2TFpn5vfZ75ywtv6jIEs0mTp1HWaCzePx/ZV5r/azms8n57Od8tlhu2iCtwyAUX8cL9OtKkwVTpomLWeJlWomLn53I2/R4cOWolVpFyWmS7UlrdJotF+fOXQbOoNUOXdVkAQDwGZ1KYOZvNGVp3kXaCczUp1I83jbazRp/HxYnO+Jvp/yD/mYosg0qJvA3Xk7tetirzEUSZh0is+PIS8ZhyrcZgzu24v6vKbGyW0vUGsBs0KztrPW5sP61+ivtv77YaI/LL3bf6Z1fb2R2ivWqLfELVKv22+xUUeydXB5ZssgIR1aOrL24DKwVlTZMLU1N5rQ23lPZmOK6Ci4AAAA+r48OzHbhzYSVpnhKfn0ueQCI+mU5/SGCwb1FnLXrqqrU2gw5BVqnZJpIIc7ZUmB2mIv8QSxX97+dWVMKSqsuzkg2ApGxshLE02QT5695dXsqM1r/Wu0RZ9tfMNvOzif7F+sed8w6DJeVoDgXkaLUtvmNtN5aH0M5rZFkfr3Z66qVY5VfddZvTzBXbcnyoDVlu5qwHACAT+3jArParYaVxjn+R7KHT2+G2c9dNwOz6qpdwS2IX6m1KVSzx/dbtds4I733VcZ2LrKo6zAvj7fN0YNCil9lDMrWmzNWxU2kmstJ40yNmssaeflvsDHpke16NfnzF8w202ayWm9X8+/pVxkj61M2QwYhTnusBFWRg1VUZLV3iDSCtfuJrYqc48WVE//MVg1vz+EK9rT2IAAAf4MPevhH+jZ90W2fVJA+or0NE5TH5acZPjowK+7MrIN+A4KbKrUlThVNSZtSefhHPhcixnp77Ic6c2qeClWLSvaotjR1ZNTVnmVxqpP/ytqLs7NZLibns30ctv9OY/rcfKdYqz2+SMpsHVqLqgNrmpxRKs5CsK7IEbXAqpUTqcLpl9MeJ2OwF8U0/qmeUw8AwOf1QXfM9tStg0ww+C6tG3U3060lWcaqzUowr7qfs9L032iaZ/uEUKbuj8vfaZtOmUAOi7+jDS7RNrFsTHxtZ9OqvvazV6WRxaqLyh8BP6WapkOzne50y+6sjXgWeVyOZ2TSrUKc7JHhVefXSexnVJvtZHHy7gKjDQDA1/ahgRn+BoOHZj3/wDQAAABw+gjMMDz9u6HjlwUAAACcKAIzAAAAABgZgRkAAAAAjIzADAAAAABGRmAGAAAAACMjMAMAAACAkRGYAQAAAMDICMwAAAAAYGQEZgAAAAAwMgIzAAAAABgZgRkAAAAAjIzADAAAAABGRmAGAAAAACMbIDADAAAAAPTUKzADAAAAAHwYAjMAAAAAGBmBGQAAAACMjMAMAAAAAEZGYAYAAAAAIyMwAwAAAICREZgBAAAAwMgIzAAAAABgZARmAAAAADAyAjMAAAAAGBmBGQAAAACM7P+ZxHNT2kEZWgAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAlwAAAB+CAIAAAB+hVjzAAAgAElEQVR4nO2d649Ux5XA938qtZgZYgbNIANhTZDdaUBml4RMHBEje+PppbNYCcl4xzghG7TuTSewayeQp1GIPY7bjneJWYLjxEEEN3YbrNhZDUqbKOAPgPyhpZZqP9zHVNd51Kl7ewaMz+/DqLtu1XnVqTp9H93zd1ZRFEVRFGuttX93qw1QFEVRlNsFLYqKoiiKkqJFUVEURVFStCgqiqIoSgpTFHt771tnMlZNrNm+a/bM21fKKOu98cI6Y4ypdbGjLzT3miXwPqMis8T1rnF28doyqRt2bdXGLdubx166nh7s1gzC3uYLZ48fqhgzPvmZi/1BJun6wd33GlM5+JPXeI2t2VoiZJk8Ko83BSsw9cuXYC8d/uoqYzbd/9X3RyBsKB9iZvD6s0ee2HL3VMWYytjqbbtmT124XN6aP7z804d2bftKq40eHanjinJbIC2KCZWxe379ztXCym7bopiwdtPDi8ujbti1lB2zrevWEkVx4vAL561dfHjTWmMqc0/9OpFz6eTRCWPWbtrz3lKZxNGiCLmji+Lg6P4ZL47r7tvbK20Nn0haFJU7j3BRbD3XtdZeeffsQ/etM8bMHloorIwvivI+5RnWMvjD84fvWv7tuDbbstb2b175WfMrE8YYs/bE7/0q/GJrX2WpXtrkZDGrglfndt4jOU20H4WimLMyM36r1BUmcgYv3j9WMWbtked/17d20L9x7swv9z5yYLmLoqLceUiLos129vsbh6213edayVK53vvjnnvXG1PZVHvoj730iuCVt8/M7tq2eqxijFk9uf5rzePX+gO7tB9Vj7ef3jS52pjK+s07Xjo3VBioPevyhVMPbt+8yhhjVm3e/sCzp9/MO3/pwKHP3j1ZGZv8tx+f+Mo/fqpiKvc/9G3+fHZYS/83P/n2uDEbd+wvfhbM4hZFa621Hx7cvQV+wrj6zq/vGauMT25/PYtkfrJ46PhZ+WmiDexl15898sTmqTUmDeaDyXW2k0f2G2M27Zz7ILfy6tnqWMWYjSffuWqt7d+8/J19D66ZWGWMWTO1+Ykjz+ZWXu+9+cQjD0xNrs5PU/K0CULN+Junn30gnXGzZmrzd46f6jv9a7NPvnjsWzCLBv0rR+Zm10+uNsZUxlbv+OLXzg9fFY9VZ6197/UX80Oeg0mcqTMzNyyrJzd99xdnBkM2JFSm7t6SH8qJrEbJ+eX4ge//Tx85OjjziyPbNq+vGJOE6/gr511LarOtQX9x/oGtFWOmPnn/S+cW0QtFro+M463ZmjHrfvbKy41dtVXGVMZWPzT3gyxVBmfbRzNLlgS88Eb58q0oo0FYFAeLl36zY2rCGDP31CmbFcXa7BNzO+/JU7u659CH1l5959SWCW8DMTsbhz/MVmBlbMxdEhNTM5ecXR7ds97vvLhhaJCpjG14sfM+fQluauHcXxi34cDV09tPlbtjygCKItKS3S8cf/LE6+7Y5GRx444vf31PVXiaaLktdXBs7gvDW1IazKwEbjr15w9c1cm0Wvv+vq0bvHH7Wi9a/FDZonjp5LHJMd/MRB066VkWXX38c1vAoZ3nr35YWF0WFp9gUbzeO5ssGYdUKebCxI9OvSubQZQPDzd2JoLWTG1+rPmj967dyI+dOvq4vyDT6/OpJevuqx9yrr6u3fTwYtmi6FFpPfemtXbx9yfWQqFaFJXbibh7inkBS4ri2k2b1k/tONu7fqF9ZNyYu9Y/+H/WHt2/yxizYeveS9duWNt/9fiTE8YkW222F1R2PHzw8s3+tcXXtk+OG1M5/MLFJa3InvXhoT1VYyp7D5240R8M+jd+/q1HjDG79h/Nquy9r/XeenD9XUlFeebAgya0KaMb632fe1xya8S7QThc2LghfFF87ScHK8bcu/vgdX90crKY7Fai00RLb6kf/PnUJmOMmXjy+Kt9a29cu7R364YkmNYOnn70M8aY/UdOWmuzsI8//auLNiuQ2bQOLv325+uMGZ/c9Sdrs9OUu7777GvYaUoAbMY/mNu5yRizY/bJKzf7g/6NE4f2VjJ1TBb96eTRcWMqYxtO/PbSwNor777qfpIrpi5J9a0P/ftNa629+YOvfMGYyjd+9KrrQtLHqw0/mvu8MWZ688wr598bWHvl3fMHHn70ovXp37zy2Mw9cLJir1sO+le+u2/36qX6veqfDz5z3Vpr/7RrcjxfPv2bV56c3WGySwJJNO5av3F6YuPz5xbff/vljcYYs+X17GMEbwbqeDKkMjb9VPtsv39t3vEuSfv6t5/rW9u/+dd/feBTxtz1szN/FvqoKCuAtCiunlw/O/e9yzfTTS9ZDNiJi3/R1dq/zG6ZSlrgfgSXHLZnJava5+6t+y5kF38yvbVutvBkRTG9p/je+Zc/PTmef57lGWFRTK5FW2uv917fPjleGbv3tR6oiVlBkp8mWnovg7vYhV8085bkg3xyGTk5Q8ofPko+68BJ+NVbf7X2w//ct6uS5snUZ3fv++WZ8/LqiM14UmWXTiAG/QvVrIXJIhjnhUOzXkusuuSa9rDX/s1grDakC6H5iwvQ5UH/2onsSdGckkUxoX/zyi+PNe+9e9IYY8x467lz0N+/nFuYylryT4d7DjyDftoqXBTzWwOuhOQWgEtlrHrWOY9XlFtOxD1Fl2QxDH9bgBqVFMXK4RcugvWZ3lrb1/rV0nhkz0oeIvBZd9/eN0ZTFK1d5gcKwGZ9df+OjWbpDCa59sXUPH/XDhJbFO/euu+vS4ZtPPnO1dd/ctAsnTXaw437saKYmzR463cvH/iXh9antxUrX5g7JjqljatSd//qrb8yWUQVxfzDRwF1g/5i/b51qyfXrh6rGFNZv3nbEXD/L7IoIk+KjqooZvb/aff6u5LhVFGsjN1/cSka6W1jSOGimA9x3yYf/tZMTXkPByjK7UOpoog98z1ozW4zzuXTk8e+OZF9HswftLnQHzhXVoc+d9NXt8YPfP+lD24OnYH0RnSmeOm3JzaMVbwLuSPE3axvXFv84YEvVdKrvtettedfODxhzD075+jHfEZWFN/vtNcZk18+vbZ4/ktbNxhjHj54IumQnJXuP9I+uHuL+yn+1FNzxphP7z7wzpUPLEf/p/MPErmBg834+0nuZdczr/34wJcq2XdmmCx687lWxbl8evnCyW1TE8ljSoXVJY4/9l8nb9AXrrHlkC6Eialt/51dPj3UeOyitVmujn37Z68N7GDx0rnGP2wsWRR7b7z0xS8++tKZczf6A2sHi5f+d/vkePKpa9B/c9tYxbl8evmbe7aZ7FZx8Fnc5ArBvbu/cQ1zP7YoHt2/y5i7vv/iHwtcZleUlWHkRdG+9+oz4F565cvN5wfEnbzs6wf4jf1Ee1I24KHSRXGIdZ/6J+Edu1iw7ylOtJ47a60d9C/N+I9jGLAbFiyKwyQbX/I4z7ApUzvOZpdtB/2Ln5kcX3ffpzeMVT7z6NN5OD68en4nsDM7J0O+apk9nhMG3ZeTO6xoxJgsGvTf27PJz74NW7+82B/wCcaoO330ce/QmqnN2cOi+A8vJDIXzz2/wb/CkfiY3Kz1SWY8uzExRPATBvHwUfKE0eCZA3u8Q5WxDc+fW6SC75J8JgCWcI4zRTG5z+oasn7zjp/ryaJyOzH6omiHnm6vrN+87XvZ0+0f/Pn1+q7t2YP7lam7tzxx5ET2CZTbs4ZlLh0aVVH07piOHLcoJr8NlP/aCPUA7bIVxaEvLayaWPPAI094X1o4cfBhYwy8c5Z8wWCN82gxWhTXTG2cnTtyRfzxgtiX3W8RrNq8/YETw98iyJ9iXjO12cmiISOHp5VPMFJd/2Z3Zt0nwLgkOFxtsNZevnAq/27S1Cdr+XXXK2+f2V3blP/0zA/+Y86UK4rW9k8d/972LRuzr5RsnJ1rXly6P730JRzvx26CRXHQv/LdfQ/mX7YpWRT/9u4rfw9G6W1F5bZCf/tU+Yixst++/+Dxz33KGHPgB2k9+9vl1z+77hPLd6X9jubdz09NGLP2h6+8Za21dvDeG+2NxmSPaynKbYEWReUjxgoXxeTbGv6p27Jdab+jwR8j//SeQ8gj14pyi9CiqHzEWOHfabu2eN79sZ41UxuX9Ur7nc3lC6dmd23PrsB7N1AU5bZAi6KiKIqipGhRVBRFUZQULYqKoiiKkqJFUVEURVFStCgqiqIoSooWRUVRFEVJIYsi9oMVQ1CjeIFMH/5oAXJRUKbcIzgEVUEpohr5PhJjgjL5/nKrCtjvtsvjPJKph5HkxZZRuhy5OpLhwTwssH7dPsE5pVpiF0jUuohKLc8e1Cl0vZdfelFj+TVYfoXG9pF3gz2p2Y8K0QgXHQVXFJlh1AJj3HbzD+3stXt5yWQtFVbGMOEylsvn3UcFxprH+84HRGg/2oEaK5kLYYiE9vCmuqr5IPAWxupljAnGxxXCWxJ1NDjdwTyJyqViLcFDUUKgzVF5KLeB7yxRLQHmM292nkJUjgktkVjOxLndbORfIB5JDqDqeDfLIy2KwrcSt9G4MxKoFrRdGEFJfPmIo2MpXUGxwT7C6efnRRgfYQCF9gTjHCtTMjYYZCPIWEqRJIaeIkoLjGqx+MCJdqV5NjDzKIkG5aPrgqs6OPtUIxxVUg5jj3xCeV1oQFAJEniB6FG3hXHK8x21Nsp32Gck00e5WSaqQcoWRUnQ4RBGHTXBvC6JC/whSQt11ICNz2BJiYqV9KEEMkH23kILGY+oUUEHg/bwNvDm8QT1Wsz+AkrlMeRz1YuV95rSEmx35wXaY4fnFCplVKM9qSFULsmdQpNNPiTWnsIB57XwVgXho8cchRErLDzqENqn5PQxS6lMbBkCRZGyQ+IVIwFKC04wfBFMQVSsxJ5gT0ZR0CQYNzR0jECmkTKS0ssbI4wz2iiJs3wuJDYzkoU2jxBJDKGdlNeMC5TjsD9UTSkqOReowW4cJPNuQC5R8hkhQnuoaFDt0EKmPTZ0dqR7plwj3yKIc69RnUavnTLT4bUw0YYypb7FM5rLp1FD5J7DQ7ELgE9TPrLyo1AgNX+U2aiFlAoqgWB/yp5gAINxjrJHmMFlEt3TFZyIwkqZ4LghksRQbgw/19bxWuK+Z6fnGq8l6Dt8ixoW9JqynHpBDRfaEzVflC9oO2MhnwxBN5mjcC6CrqEBl3iRvGg359udXqteay10KWkSg3k3+XkZFaKiCC2WeEUFHQ1NMF58C2o/k7tuZCVZQsmHA9E4uIpQ+Z6cYBoF44++pRyhWhghklgJ44zqQkVRLsTaHJwFCkZv0DDKKV4RExbGNcpTXh2lvYzX3uxTPeEhYUCEFsrtkXuH2oy+kPTkLaEmlBJSJlejxubtnU6n12lPO2eKUflcQPXyES6KsdNA9XHTET3KS2aWNMxvRhFjKiUE1YWGBapmvIZ9eAvL+A6DwLRTYfGMD9ojjHPwUK4OPQTtYWxGWwrAB5YPDmObxGZ+iDf7bnuBuUa1BycCymEc4dup1/LEjrWHkckbFqUlaH9+VDIRwuhJsj0YT6a9Va81mm1re51OLyqf+SXpJjO6jkZO+J6ipD04B54PUVnCr0mJKDgE3Z5QyZIIxC5p/nVQoFw7dJBH2EdojzDOQXf4dspTVHIwzkJQH6NmDdrGvEbtpGJOKaJiQvnFDAkmhhcNtFFoCeo+Ff9i9jBCitnMT4drOWynOvBBoA5ZOlaoRt5aNjjdmql1ba9RnenGbI+UtUE3+eiVYcTfU4R93MzL26nsQaV5uvikpI4yWUKJ4u2Rz3rs66BAiXmFGyXmCe2RxFmiK2hqrD3u22JLi3cnPyRZJq4lwllGpwN1R7IEUEv4bpQLUALzuvAhiT1eT6E9QeGS3UmSe0GbR7tnSmwobG1Oq14zZrrd6QWlFdtbrNiXkpT9RRt5AqHrLXaCPdt43ygDKC+o6KO+o3JQ1d5rdBSTB8IOBdrlcxc0gJkjPs4SXRKYgKOdg32CulBfKF3MvMBoRAVfnkiSHBCmGSOH95cXLlkpUB18W8wexjBhe2zwhZbInaVMCuaqMOUkqvN2+fTx9kgWyGgpdabI7DjCpR6Mct4HDTGT8ZLYQS+oFskoVC98C1+j4eLfUi6jjdR0SDISbY9NUybO/KJiZFIGjzB0El0Qrx125i2h7IFamLGUAWg33jtGEdoNRoCKDy+NstyLIezjvZDYA20QNkKvmf6SYHr9qTTwBKIzC+0Z7VxQ2mGjZPooCW5nbyxjeUn0B8EVRVEUJUWLoqIoiqKkaFFUFEVRlBQtioqiKIqSokVRURRFUVIiiiL/qE+v0542Jv+eSizB54ioJ6kKCAw+GCZ8qIl/KEs+VqC3WzPGGJP8rqB4FHJ0mZ7XCuqFR+GDbXD4qKwtMykFzFju3IPP4AWfVBQiSUtGZqteM8bU6q0opQTJD0ybRrNdwB7qYUsU+aGo2bGCNI4VGEvU2FHtJHwtkGz1t3ZPCxRFdN+n6C60pquNIiUR1Dk0lWHhYaLDWx70C5rh2eO9gNmPuiNRStCtYUkmWfxRk4iCqmA0Mor4MMLhEl1CFyQdeF8k+cC8lhy1gtxDrWUCTrVTYvnhbCR7jeo0+tGNod1sEHUUkSa0J8pseejQnq16zd330HhK0iN2BiVIUleiKzINyFogNCMoXxK3woTPFNF5RWk3G/BjnQR3hXtagptU8JAXPp6gkaicvIV3inGTcTahu9DK/y0LqiIoQdhBMtbTyy8Y+Qzyc8dIo6yVzzVvMGOY3P5R5Z7cbP4Q7wJqM2wEUpPf+pLSbjYMdi6Y0Ou0p4c/CMrtiYowFZ9I3xFpfOT51wXyhNFFvWAU5eoKhAKtBbk01GXGeKGPo4IrisFgeeT/NyQWN1gGLEuqP3U0eKiwhcIO0B3qrxVnP/1pekgIb6FkEiU+QheonuhRfqxcstDa4NGg/XmsoGG8/SOBkoaaLbcHdYFZfXB5QrG9Trsqu1aUXGjlP0PDsw25PVGZEwyaxHeLFQ90ucltDlrOI0ldyTIpEAq+Fgj3H0mHknsaivSeIrNaugstY8x0dWamWi1wQxEmkB32Fh5Ch1siRl6kmHavA2ohKgdtkfyFoSCC1GtUp5NfoHf/k6fnPvUWdZNVhxgG40Y5wqhgJsgV64aUEV4eT2nQDP4F4xTaBzpFDUE1yn1ER6HtzFvPsOGj6f2/er0evKGYbBeST8+tei2Rlv+opsQeLr2I6ab6CHzv1oyhKjcc5bZTelE53gs5jBDXTUpyTCisFdQCbzgVIsYwGCvqdWHKFsX8DIa/ocg4b0MTQ9kgh48gqh1NHf4FVCpccqhtwyQ3FDuNarXZnM83CMYvSdLExlOynPi3lCj5UbnNTPz5bJTYE5x91ODR5p7QKSrfYqeP9j2/2x2+oZhcL5VdT0qlteq1+WZz2pjWQldmT3QVCS5GSnKrXu/aXmO4APADJaq9o8yOEUQYHDjvwU0DvuBrgXy/cjtI4sY4UgxRUYT2Ja/di/7dhVb+IdG7iiLMDHdho+uc2guE9uevvbHM7sCnFBRCSWD+8iSiks9f/JO9TBwkCSSJpBcEJjhyk9CxTMJExU1oTBB3liW6KL1woMGSRxheaiDahxlLTStqMOyZn8/Z4fLAXECTXDvNnmAcqqASe7xu8K08PiFdvU6nh17j9eYXlc+0o2lGGUNJ9joE5TACJWEX1gLecdhBEjfqdWEiiiJ80W428oRI1kCv0zmP3R7nLYb+o0P4xvytcPo9vVAO8xYaQ4WI/8uryMk+gqWfnXudNLj0qsGNZ5xCF4N31JNPRSDojquOHxsVJUoRM5AJoGshLyQoDTVe4n5QKSVc0gE6BY0RGN+tZXUr3/46nY5TKUmSs0aqW15sCvzrWolr1NgY3623JKkZl8wC+tZiMuFR9JB3VJi61FHmtRHXAn6hSTTCRvlikRPx9Ck0Jf9E0F1oGTPd7nTm64/uq88fazbgg9TBte0GCPWZzza5C95koKLkyUoJge1CdUBXflUq+STema/PR33yEiZQMJieHGa98TntJQMznJcswRUlXIS8kCjtFoRiJLkHTaIMY+IMnaJymDLDGOOcHfYa1elavdVdaM19fa61sDAje+ImuQoCS2NWC9MdtlWvy/91LZxoKkqS+DADs88B3RniKxk2NFOSt/IpZo4KuwWPUqGQ14LyGi3tV4EVCon4niLanlwJMWa6Wp02S7cWZqIeQqXShW+R+8+v82IbE8x1NPspFcLlba11H3NvNxsmdBZOSYNbBu8gBHU5ZLw/EDUm1hc5kk0hqKWMPcuae7wNwRqABt8S/jKFIbnOWa1WTVbeugutYt/Oyli6Eus+mCNcNXx2oUNgB5ku/8E3dGCxuR7JchCO5YMjDLukFhRzqtieVpjAVzIKHErWQ/LJTghMl2ACUR0oGCFC4ajNQeOp9QCnk7E5aENJXyQIZQrdgTkN36Iqohyhgh9rsMSeKDnB14ybXue8PxphZjjTn3KKsWSYXqM6c7rTni9VFxEk9qB90KjyHhX1nawlqHlotvBpw6gWGoOK5ccWC4VXCxingtJgn6g4RBH3T4apuLgknxyjvrDoOcnHCGZMMDqoQG/NMKmM5gRMX7RP8LXEZolTXn+YN4wvQYKBkktAraUkQ6cK2GwL+U5NVmE5lEwqpLzNfAx5q9DciOoTdNz7kZec5D4iRPjLcLH2UF4w9qMxlPvOTEEwVag+koG8Me5bKnWZfCucBm4t4AcWzlveqWLoD4IriqIoSooWRUVRFEVJ0aKoKIqiKClaFBVFURQlRYuioiiKoqQU/J6iBOqZpTJiiz2zRD3sFNQV7FbgibKRyCzTvxjMbFL9vUfCCj8kNqrkEUqQPNIm7EO9oCxZmalUFIVBWhThvmaH6w3cGviiWGBzhFrQ7Uay+cr1BjdQVCnvOxTCwAuP9SWoy9JRhUp5m2HnAjYz2svASEAnqEwL5bhEiKIoK4zo/ylasK/BRuYv3MqLLX5+144SDjdZtN4EBUo262AfYTQoOSPZSYMbd1AL42b5opiPogp5sbFUcga1BPsEnUXHFvBLUZTRIjpThDuj287/9foX3tTy4UE5vEx0IHQQBoGXg/aU9LHi4FBvR7KBUgGUa2GsRR0crc0lO/P5U6CFmVMv5dzOQmsVRVk+uF+0oVayt1Hyf2FPT4vQUHR3RodTOxGz1zNbP2W50BjYHqx2jCXorhpbG9CYSKLKuABHScpAlMFCO8sTzBweC+KDphAfz2VyTVGUIHEP2sDtmN8a4EBmuwkCtUML0RbGL1Qmo5TRxWyjvEAvnkGneJv5qFKbL2OwcCC/6UtUMARrjEQCTwFjhHFGDaYSAJUca6GiKIUR3VOEm7X7lv/riYIqvD68uZLNUbJ9oI4w0iiZbmSoTd/zPaqcMEby9YwxGH0bFBIcSKWKazBahGLnHX3LExQYJQd6ijoF3Wd0MZ1NaE4VRRkhgcun7lsL1qfwL7p9oNsBv+z5TQeayuti/BJqcf1CO0O9qC7UVGYsY3NwAw0aw7gT9IJSxAsMzntQmpxgfCilvJCgg1CavHOUzYqilGTlzhQ9yZRGxhimm2TTHG1R5DtE+R6lVFKN+DCiRZevUpQZlASoiPdLXhSDMyKXA4Mg7ENFj0kwaK08n21oThVFGSHS/6foboLoXsBvfN5waq8p7w+1B1GHPLOjtiqmf1QBYDbloAFUIwXVOWgwtU1LNn1ehcR+1AbhWLQ/MzDYx6uaaGemKPIrJWieoijLSsEzxbwD+tc9Cl/Dt0KoXZj6hE4VYL5a8xYyjgiLvbwo8t2C7VFQ5TY4oZIyA48WKOTl3aQSNaoPk1FoXnkt7iE0W7zOiqKsMNFnirCPV4f411CyEMmOzJQi2ActgZL9l/KLspD3Hb6l9mK0keovBxUiNMMQMKNibUbHMrrKyInVhY5yh8P+lC6vj9ApRVFGjv4guKIoiqKkaFFUFEVRlBQtioqiKIqSokVRURRFUVK0KCqKoihKihZFRVEURUkJ/yB47AP3QYHFDC1DMaUG++4E4z4VIlQ70yeoSC6Wh+kcnFM0MYK+Mxp7nfa0McZMtzs9uQuM2cGjyzqhEnuERK2vYmIpRXJ1se4XS29qSHCDio1b7JoF9BrVaWNMo9mO0kvQrRljjGktdAuYFFykQQlyXbHItxG5C+WNjPsvGcEWKiN555m3hsh7KkbwBbQqKIQaBV+gWng5wT5yOWiLxDXGsFjV+ZQxjkg0Wmu7C63paqN4SSxUFO3yTKjEHiHFMjl2UVBHveBQSRVUIVQHO0j0BkXx7Yw7US3DdGvRn/B6jeo0rHyUNKFJUZbLo4f17NZKfA6IssqbLDiDQZkMZc8U+bdBs6LWVZQQSqCkP6oXRoASi7YzY6kJphYq1ScqA3KrqEPB4RRoB9gIZbabjQIrirGED06wD98uCT4TyaDBjNmUTKob+pqXTGmhRvEqvKOS+RJql1tOHaKM9Pqg2cLY3Ou0qxGf8JIzS7KIdhdaxtTcaik3KSrIVIhi3S8AbxXjAjqDQZkMZc8UjeDTnDeQMtTr4P6VGykJlry/5x3Um7fDLLRY3sAQoV6jAlFdFoQrai6gtFhRqARUBa/UWtuq14iPySKYVFnJCRWaVNgpoUwq2sEEQ2c/KEeeGIWhpFHzKJTAe0cdCiZzd6FVq7dQg72ONWOCdw3azYYnTW5SVAqNai0XIMoqPhX5VRmk1JkiVMlbwKwfi/lmgfPytcpYhTrlCZS4Jgw36g6qi3IKDqHMkMQEtcE9GvSLCaDrCyPTfdtdaBljpqszM9XqqG4oUjNO9adaGEXUhKJ6UQOEivh2Jod5OXyCoUeZifbGUp3RPpQBcIgNBZzBgLRk2pm3MDjDb9MiV6/PBC97tOo17/yPoNeoTjea7eyEstaVmcTMhRtPSZ+grmQVl7mHykwoZZg3kJrcWEZzppi/hiFDu43Qx0gAAAhESURBVMGjcA7Q+UBl8sKDNku6QSPtsL/MhKHuML7Ezn3QHU841RntzwSEbw9akrzIPwKXvKEoMXUlJ5RpjPII5oM8kXgzYKMk2eAhzx7eHeo1KgRVhLYzqwZVFGxn3jLJ3Ou0p9MiF7yhuFTeBCTSOo1qtdmcT04rhSbx+Qkpupa79XoLvWJMTYclJo6fxKAciTtBRnZPMbhCgtMTFMWrljTyh5jXkohTqvOxEr+YKLly4IwUyDDhRDD+MlqY9vxvr9OezvYO93KTt7oo+2FkGNdWckIZM4pBZYvc5qAci7lGdYNvg57yuYEKoSyRT5zETkp+bDI753PW2m5tqeC5rz1E106TkzCvm8wkv2CgQ6ixcl29Tqdnbate884UmSmjtPOqIaiWKL2Qkd1TZMwKeoWOhTOEqkb7MKN4k2CHoOTglFAxQXVRTnlD+DhQHWAcgu2S+EcNdN1sNxv52WFyQ7HX6Zx3KmU+hDLVYkG+tRNKBaQM8lmg8icoRBIciLynJB+ErkEY14IdgrMcfJ38xT7h9Tqd0zXsqxTDpN/foLplV1PSZ1OTCiQxSegdNTbe/VrX2k6nAztLFkLhPsKcl0MWRSqzvRQPpjvlAH+IWiSUDV4fXmOUwbxkyTSgy57SRfkoHBvlV5QcPoyxBiQt+dlhd6FlzHS705mvP7qvPn+s2fA2iGByBycdHbLcE1psTfJClmlRMIqCBlACqVHQYFRIlM28GUw2QjehKEkyO2eE6TcT2s35Rz6/Z2GhJbzT1qrXDFIa8+9p9BrVarvTma/PM0UR+oImhnzx8ofyluTR8S5wFuYeBdMNdYeaOPd1sQVY9hdteHP5zvAoP3OFM144x7AbejSXyScW4xeji+rAH3KFUKD9KTkSpZKkDI5NNgJjpqtLj6T3GtWZLtaZQZIqKzmhcsuD8K6NalGgQ+TLMOgpnxsSRcHZkYQCNQCdUEtMLiMtu85pqtWqyZ46adVnyjw+5l59bTcb+UVUoUnuC3muMoGldCU/viF74BaHSaGg5dQuV2wBjvJBG8YI3uLgbhVrJCNT8hpaiy7dAntNUBcz/XxmMMg3i6Bq3h50r4lN1uTDZqtej/pyRjAtV2xCg40WBAfCSBDOfuyisOw8UsajY6Oc4l8zzqJGUhPNDGf6U04xlnj0Ou2ZeqvdnC9XFxEkJqF90MDyThV2Pwp+pph8oKaysG1cUQzmE+yDmiXMbEogPxxdBkzsqEPMKHT52eHJoPqgGhmnDMAbIp9mxinKMLcdWuLawGPpJOFNstlHztgvLDKGwZ6UPTDa1FtGpiQ4UU55YiWjYE9qLHQZ9Y43QGIYGkAYN7QzE0N+inmrYB/Gd8qRkOPUj7yk9xEhwsyPNYlyhHEBDWOk+yL41ILd0EyQywyiPwiuKIqiKClaFBVFURQlRYuioiiKoqRoUVQURVGUFC2KJMmXZLkGRVEU5c5C9PSp5AEwyaNB8meBgk8iMdKEDym1m43sIPojTN2Z4d/xK/19oyKgv7Wf/YJ2qX896BH5n24URVHuTKK/p+i1Rz3zKnmCNliAvdeS0gta3F8ptMlj08NPQvvfH2+D31hZMeCPRNhR/D9eSPKdqpGKVBRF+YhR8PKpW5AklUx+EsmUQG84VZiD6lr1mldRsp8Z6+Vvh+uQf9Yo51izWbp0+RXaLk9RtLfobFhRFOX2IXz5FC0wVOliGvkhVGVFKyhllUQ18XXaoUavNqDnakJGURSR89RlKoplPFUURbkDEBVFvlFSyai3zAteC2UeZU9+NLkhh/7qblZm/H/1Mvwf4dN/hHa6005+kYKvIkxRzH8t0P3XMNlvgQ4ZAO8sukWxl1ni9snumCa/KbpkZK407+CWf72zqCjKx5zRFEVqLPPaK1ewnTn/44siT7AogsKQ/Dh9fmX1WFK68s7T7H8KZYrisWaz4/yKrmuY95/JYK3Ki6JrQF478//cC//Z6bFms+ecFjs9bdZf+I9PFUVR7kBGc/mUPzmDMuXtaAeqKFKWuCYlp0rM5VO+KHY6HbfSYJcxyV81HD7/63U6Pe8fCmZWDWnETFrS26rXnKqWGuZY5RW5XmfoKPy/oFoUFUX5WDOCM0X41jsULFSWLsCGPoNELZFYxT9owxdFO1wIk6LCfIGRv6eIFsLMgCWpMUXRtBa6vU57vl43xqD/1NtRmhZR5/+CalFUFOVjzQrdU/SGM+18uTXE+SIlirDHe9YGvmXuKXpFpda1veTffqKwRXHpjNO9Cpqoc//dDHNP0bt8mjR2F1r0F0iGTnNr9Vav05537jgOVd/TXzXGfPU06YCiKModRtnLp0zhRFskxQ/t4xoDVQeHQ7JHWoxBvqQ4dGqY/FNp9GirXkPPxnL4B23yCuSWveTmontVc9iApf9l6tTFpbdJlyXfhr0bLnvd2vCPAPjVV4uioigfM4r8P0X0EHOOiFYs5rUdLn5uB/4v1RiL9xWIMt9qH8lXMmK/Pggel60Kh9/C3yhQFEW5HYguil7lQwshek5pQ6UuKByeJnrtsNGDcXaY2+I33hIKlOThM0v5bcLiv1GgKIpyZ6A/CI4DbuPdqidQCuoN/bIrJOKEUlEU5U5FiyJJd8G7kggaboENy0Wvc/q0VkRFUT72aFFUFEVRlBQtioqiKIqSokVRURRFUVK0KCqKoihKihZFRVEURUnRoqgoiqIoKVoUFUVRFCVFi6KiKIqipGhRVBRFUZQULYqKoiiKkqJFUVEURVFStCgqiqIoSooWRUVRFEVJ0aKoKIqiKClaFBVFURQlRYuioiiKoqRoUVQURVGUFC2KiqIoipLy/wuMrg+lnp6nAAAAAElFTkSuQmCC" alt="" /> 线段树还是比较薄弱,搞了好长时间,还可以用优先队列做
O((n+m)logn
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define for0n for(i=0;i<n;i++)
#define for1n for(i=1;i<=n;i++)
#define w12 while(scanf("%d%d",&n,&m)!=EOF)
#define cl(a) memset(a,0,sizeof(a))
int n,m,t,Min;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root 1,n,1
#define mid ((l+r)>>1)
const int MAXN=;
const int INF = 0x3f3f3f3f;
int head[MAXN],minn[MAXN<<],in[MAXN];
void pushup(int rt){
minn[rt]=min(minn[rt<<],minn[rt<<|]);
}
void build(int l,int r,int rt){
if(l==r){
minn[rt]=in[l];
return;
}
build(lson);
build(rson);
pushup(rt);
}
int query(int k,int l,int r,int rt) {
if(minn[rt]>k) return -;
if (l==r)
{
return l;
}
if(minn[rt<<|]<=k) return query(k,rson);
if(minn[rt<<]<=k) return query(k,lson);
}
void update(int pos,int val,int l,int r,int rt)
{
if(l==r) minn[rt]=val;
else
{
if(pos<=mid) update(pos,val,lson);
else update(pos,val,rson);
pushup(rt);
}
}
struct Edge
{
int to,next;
}edge[MAXN];
int tot=;
void init()
{
tot=;
memset(head,-,sizeof(head));
cl(in);
}
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
init();
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
in[v]++;
}
build(root);
for1n
{
int id=query(k,root); //得到小于k的最大编号的结点
k-=in[id];
in[id]=INF;
update(id,INF,root);
for(j=head[id];j!=-;j=edge[j].next)
{
int v=edge[j].to;
in[v]--;
update(v,in[v],root);
}
printf("%d",id);
if(i<n)printf(" ");
else printf("\n");
}
}
}
2015-07-23:优先队列
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m,tt;
priority_queue<int> q;
vector<int> vc[MAXN];
int in[MAXN];
int head[MAXN];
struct Edge
{
int to,next;
}edge[MAXN];
int tot=;
void init()
{
tot=;
memset(head,-,sizeof(head));
cl(in);
}
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
bool vis[MAXN];
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(~scanf("%d%d%d",&n,&m,&k))
{
init();
cl(in);
cl(vis);
bool flag=;
int u,v;
for(i=;i<=n;i++)
{
vc[i].clear();
}
for(i=;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
in[v]++;
vc[u].push_back(v);
}
for(i=;i<=n;i++)
{
if(in[i]<=k)
{
q.push(i);
vis[i]=;
}
}
while(!q.empty())
{
int now=q.top();
q.pop();
if(k<in[now])
{
vis[now]=;
continue;
}
k-=in[now];
for(i=;i<vc[now].size();i++)
{
int x=vc[now][i];
in[x]--;
if(!vis[x]&&in[x]<=k)
{
vis[x]=;
q.push(x);
}
}
if(!flag)
{
printf("%d",now);
flag=;
}
else
printf(" %d",now);
}
printf("\n");
}
}
hdu 5195 线段树的更多相关文章
- hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- hdu 3974 线段树 将树弄到区间上
Assign the task Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3436 线段树 一顿操作
Queue-jumpers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- hdu 3397 线段树双标记
Sequence operation Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 4578 线段树(标记处理)
Transformation Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others) ...
- hdu 4533 线段树(问题转化+)
威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- hdu 2871 线段树(各种操作)
Memory Control Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- hdu 4052 线段树扫描线、奇特处理
Adding New Machine Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 1542 线段树扫描(面积)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
随机推荐
- 解决pdf打印预览中遇到特殊字符,导出失败问题
本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. 由于近日由于pdf中存在特殊字符导致导出失败,主要原因是"&"字符与freema ...
- keepalived 配置文件参数详解
global_defs 全局配置vrrpd 1. vrrp_script添加一个周期性执行的脚本.脚本的退出状态码会被调用它的所有的VRRP Instance记录. 2. vrrp_sync_grou ...
- 流媒体技术学习笔记之(八)海康、大华IpCamera RTSP地址和格式
海康: rtsp://[username]:[password]@[ip]:[port]/[codec]/[channel]/[subtype]/av_stream 说明: username: 用户名 ...
- 利用fiddler来模拟低速环境
为了让我们的站点拥有更好的用户体验,更短的加载时间,我们会“按需加载”页面的资源. 在调试程序的时候,我们希望能有一个低速率的网络环境来模拟真实线上的环境,这个时候fiddler(下载fiddler请 ...
- Spring Tool Suite 创建 SpringMVC+Maven 项目(一)!
使用Spring Tool Suite 创建 SpringMVC Web 项目,使用Maven来管理依赖! 首先对环境进行必要的配置 1. 配置必要的Java JDK版本! (菜单栏-窗口-首选项.) ...
- matrix 矩阵(多维DP)
题面 \(solution:\) 这一题其实就是一个非常明显的三维背包问题(但博主太弱了就10分QAQ) \(F[i][j][k]:\)表示走到\((i,j)\)这个位置并且背包容量为 \(k\) 时 ...
- MySQL-数据操作-增删改查
1.增加: insert into 表 (列名,列名...) values (值,值,值...) insert into 表 (列名,列名...) values (值,值,值...),(值,值,值.. ...
- 非常有助于理解二极管PN结原理的资料
https://www.zhihu.com/question/60053574/answer/174137061 我理解的半导体 pn 结的原理,哪里错了? https://blog.csdn.net ...
- 什么是BS,BS和CS的区别有哪些
BS和CS的区别以及优缺点 C/S又称Client/Server或客户/服务器模式.服务器通常采用高性能的PC.工作站或小型机,并采用大型数据库系统,如Oracle.Sybase.Informix或 ...
- Identical Binary Tree
Check if two binary trees are identical. Identical means the two binary trees have the same structur ...