有标号的DAG图计数1~4
前言
我什么都不会,菜的被关了起来。
有标号的DAG图I
Solution
考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推?
设\(f_i\)表示i个点的答案,我们考虑假设现在有j个点入度为1,那么可以选出的点就是一个组合数\(C_i^j\),边的可能性有两种,对应的就是\(2^{j*(i-j)}\),然后接着搞,肯定这样子算会有重复的,所以容斥一下然后和以前的答案乘起来就好了。
\(f_i=\sum_{j=1}^{i}f_{i-j}*-1^{j-1}*C_i^j*2^{j*(i-j)}\)
然后就可以递推了。
上面虽然不是瞎扯,但是完全过不了本题 90分了解一下
所以需要运用的是什么?
当然是预处理啊(辣鸡出题人卡常数)
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int Mod=1e4+7;
int c[5010][5010],f[5010],two[25000010];
int main(){
re int n=gi();two[0]=1;
for(int i=1;i<=n*n/4;i++){
two[i]=two[i-1]<<1;
if(two[i]>=Mod)two[i]-=Mod;
}
c[0][0]=1;
for(re int i=1;i<=n;i++){
c[i][0]=1;
for(re int j=1;j<=n;j++){
c[i][j]=(c[i-1][j]+c[i-1][j-1]);
if(c[i][j]>=Mod)c[i][j]-=Mod;
}
}
f[0]=f[1]=1;
for(re int i=2;i<=n;i++)
for(re int j=1,d=1;j<=i;j++,d=-d){
f[i]+=(ll)(c[i][j]*f[i-j]%Mod*two[j*(i-j)]%Mod*d)%Mod;
while(f[i]<0)f[i]+=Mod;
while(f[i]>=Mod)f[i]-=Mod;
}
printf("%d\n",f[n]);
return 0;
}
有标号的DAG图计数II
Solution
考虑上面的式子怎么搞?
发现如果想要卷积优化肯定只能够把2的次方拆开啊。
\[
j*(i-j)=i*j-j^2
\\
=\frac{i^2}{2}-\frac{j^2}{2}-\frac{(i-j)^2}{2}
\]
化成这个形式直接二次剩余随便搞就好了。
P.S:如果不会多项式求逆就看这个
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
const int N=300010,Mod=998244353,REM=882049182;
int r[N],c[N],F[N],G[N],inv[N],jc[N],jcn[N];
int qpow(int a,int b){int ret=1;while(b){if(b&1)ret=(ll)ret*a%Mod;a=(ll)a*a%Mod;b>>=1;};return ret;}
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
void NTT(int *P,int opt,int limit){
for(int i=0;i<limit;i++)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<limit;i<<=1){
int w=qpow(3,(Mod-1)/(i<<1));
for(int p=i<<1,j=0;j<limit;j+=p){
int W=1;
for(int k=0;k<i;k++,W=(1ll*W*w)%Mod){
int X=P[j+k],Y=(ll)P[i+j+k]*W%Mod;
P[j+k]=(X+Y)%Mod;P[i+j+k]=(X-Y+Mod)%Mod;
}
}
}
if(opt==-1){
reverse(P+1,P+limit);
for(int i=0,inv=qpow(limit,Mod-2);i<limit;i++)P[i]=1ll*P[i]*inv%Mod;
}
}
void Inv(int *a,int *b,int len){
if(len==1){b[0]=qpow(a[0],Mod-2);return;}
Inv(a,b,(len+1)>>1);
int l=0,limit=1;
while(limit<(len<<1))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<limit;i++)c[i]=a[i];
for(int i=len;i<limit;i++)c[i]=0;
NTT(c,1,limit);NTT(b,1,limit);
for(int i=0;i<limit;i++)b[i]=1ll*(2-1ll*c[i]*b[i]%Mod+Mod)%Mod*b[i]%Mod;
NTT(b,-1,limit);
for(int i=len;i<limit;i++)b[i]=0;
}
int main(){
int n=gi();
jc[0]=jcn[0]=inv[1]=1;
for(int i=1;i<=n;i++)jc[i]=(ll)jc[i-1]*i%Mod;
for(int i=2;i<=n;i++)inv[i]=(ll)(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int i=1;i<=n;i++)jcn[i]=(ll)jcn[i-1]*inv[i]%Mod;
G[0]=1;
int Limit=1;while(Limit<=n)Limit<<=1;int t=qpow(REM,Mod-2);
for(int i=1;i<Limit;i++)G[i]=1ll*jcn[i]*qpow(t,1ll*i*i%(Mod-1))%Mod;
for(int i=1;i<Limit;i++)if(i&1)G[i]=Mod-G[i];
Inv(G,F,Limit);
printf("%lld\n",1ll*F[n]*jc[n]%Mod*qpow(REM,1ll*n*n%(Mod-1))%Mod);
return 0;
}
有标号的DAG图计数1~4的更多相关文章
- 【合集】有标号的DAG图计数(合集)
[合集]有标号的DAG图计数(合集) orz 1tst [题解]有标号的DAG计数1 [题解]有标号的DAG计数2 [题解]有标号的DAG计数3 [题解]有标号的DAG计数4
- COGS 有标号的DAG/强连通图计数
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS2353 【HZOI2015】有标号的DAG计数 I
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 提 ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
随机推荐
- 如何使用Log4j
如何使用Log4j? 1. Log4j是什么? Log4j可以帮助调试(有时候debug是发挥不了作 用的)和分析,要下载和了解更详细的内容,还是访问其官方网站吧: http://jakarta. ...
- 2017/2/11CSS基础
一:html中div: 1.DIV标签应用于 Style Sheet(样式表)方面会更显威力,它最终目的是给设计者另一种组织能力,有 Class.Style.title.ID 等属性. 2.<d ...
- The Django Book(自定义ModelAdmi类)
默认的,管理界面下显示的东西只是 python2:def __unicode__(self): 和 python3:def __str__(self): 中返回的字段内容 想要让它更加的多元化的话 c ...
- python学习 day22 (3月29日)----(生成器推导式)
新手上路请多担待 1 2 封装 3 私有化封装 #__author : 'liuyang' #date : 2019/3/29 0029 上午 9:35 # 不想让别人看 修改 我的属性 # 源码来说 ...
- 2019.01.08 bzoj3809: Gty的二逼妹子序列(莫队+权值分块)
传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nl ...
- hdu-1255(线段树求面积并)模板
题目链接:传送门 思路: (1)建立线段的信息,每个线段存储l到r的线段的x位置和y的起始点与终点. 建立线段树的节点信息,每个节点代表一个区间的信息,x表示区间的横坐标的位置,l,r表示纵坐标的范围 ...
- vue路由跳转的多种方式
1.router-link to 跳转 <router-link to="/child"><button>跳转</button></rou ...
- laravel 5.1 使用Eloquent ORM 操作实例
Laravel 的 Eloquent ORM 提供了更优雅的ActiveRecord 实现来和数据库的互动. 每个数据库表对应一个模型文件. 数据库配置 .env文件(也可以直接修改config/da ...
- matlab画无向图,基于坐标的无向图联系作者
%函数名netplot %使用方法输入请help netplot %无返回值 %函数只能处理无向图 %作者:tiandsp %最后修改: function netplot(A,flag) %调用方法输 ...
- poj 1094 Sorting It All Out 拓补排序
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...