原文地址:http://www.cnblogs.com/twjcnblog/archive/2011/09/07/2170306.html

参考资料:http://developer.51cto.com/art/201403/433874.htm

正如我们所知道的,Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)。

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

很简单吧,代码看起来可能像下面这样:

for ( int i = 0; i < 节点个数; ++i )
{
    for ( int j = 0; j < 节点个数; ++j )
    {
        for ( int k = 0; k < 节点个数; ++k )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

for ( int k = 0; k < 节点个数; ++k )
{
    for ( int i = 0; i < 节点个数; ++i )
    {
        for ( int j = 0; j < 节点个数; ++j )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。

那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。

那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。

好了,基本的介绍完成了,接下来就是实现的时候了,这里我们使用图以及邻接矩阵:

#define INFINITE 1000           // 最大值
#define MAX_VERTEX_COUNT 20   // 最大顶点个数
//////////////////////////////////////////////////////////////////////////
 
struct Graph
{
    int     arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];    // 邻接矩阵
    int     nVertexCount;                                 // 顶点数量
    int     nArcCount;                                    // 边的数量
};
//////////////////////////////////////////////////////////////////////////

首先,我们写一个方法,用于读入图的数据:

void readGraphData( Graph *_pGraph )
{
    std::cout << "请输入顶点数量和边的数量: ";
    std::cin >> _pGraph->nVertexCount;
    std::cin >> _pGraph->nArcCount;
 
    std::cout << "请输入邻接矩阵数据:" << std::endl;
    for ( int row = 0; row < _pGraph->nVertexCount; ++row )
    {
        for ( int col = 0; col < _pGraph->nVertexCount; ++col )
        {
            std::cin >> _pGraph->arrArcs[row][col];
        }
    }
}

接着,就是核心的Floyd算法:

void floyd( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    // 先初始化_arrPath
    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            _arrPath[i][j] = i;
        }
    }
    //////////////////////////////////////////////////////////////////////////
 
    for ( int k = 0; k < _nVertexCount; ++k )
    {
        for ( int i = 0; i < _nVertexCount; ++i )
        {
            for ( int j = 0; j < _nVertexCount; ++j )
            {
                if ( _arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] )
                {
                    // 找到更短路径
                    _arrDis[i][j] = _arrDis[i][k] + _arrDis[k][j];
 
                    _arrPath[i][j] = _arrPath[k][j];
                }
            }
        }
    }
}

OK,最后是输出结果数据代码:

void printResult( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    std::cout << "Origin -> Dest   Distance    Path" << std::endl;
 
    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            if ( i != j )   // 节点不是自身
            {
                std::cout << i+1 << " -> " << j+1 << "\t\t";
                if ( INFINITE == _arrDis[i][j] )    // i -> j 不存在路径
                {
                    std::cout << "INFINITE" << "\t\t";
                }
                else
                {
                    std::cout << _arrDis[i][j] << "\t\t";
 
                    // 由于我们查询最短路径是从后往前插,因此我们把查询得到的节点
                    // 压入栈中,最后弹出以顺序输出结果。
                    std::stack<int> stackVertices;
                    int k = j;
                     
                    do
                    {
                        k = _arrPath[i][k];
                        stackVertices.push( k );
                    } while ( k != i );
                    //////////////////////////////////////////////////////////////////////////
 
                    std::cout << stackVertices.top()+1;
                    stackVertices.pop();
 
                    unsigned int nLength = stackVertices.size();
                    for ( unsigned int nIndex = 0; nIndex < nLength; ++nIndex )
                    {
                        std::cout << " -> " << stackVertices.top()+1;
                        stackVertices.pop();
                    }
 
                    std::cout << " -> " << j+1 << std::endl;
                }
            }
        }
    }
}

好了,是时候测试了,我们用的图如下:

测试代码如下:

int main( void )
{
    Graph myGraph;
    readGraphData( &myGraph );
    //////////////////////////////////////////////////////////////////////////
 
    int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
    int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
 
    // 先初始化arrDis
    for ( int i = 0; i < myGraph.nVertexCount; ++i )
    {
        for ( int j = 0; j < myGraph.nVertexCount; ++j )
        {
            arrDis[i][j] = myGraph.arrArcs[i][j];
        }
    }
 
    floyd( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////
 
    printResult( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////
 
    system( "pause" );
    return 0;
}

如图:

测试代码:VS2015 C#

            int[][] pathArray = new int[][];
int[][] pathResult = new int[][];
string strData = "";
for(int i=;i<;i++)
{
pathArray[i] = new int[];
pathResult[i] = new int[];
}
for(int i=;i<;i++)
{
for (int j = ; j < ; j++)
{
if(i==j)
{
pathArray[i][j] = ; }
else
{
pathArray[i][j] = -;
}
pathResult[i][j] = ;
strData += pathArray[i][j].ToString() + " ";
}
strData += Environment.NewLine;
}
strData += Environment.NewLine;
textBox1.Text = strData;
Random rr = new Random();
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(pathArray[i][j] == -)
{
pathArray[i][j] = rr.Next(,);
}
}
}
string strtt = "";
for (int k = ; k < ; k++)
{
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{ if(i!=j)
{
if (pathArray[i][j] > pathArray[i][k] + pathArray[k][j])
{
pathArray[i][j] = pathArray[i][k] + pathArray[k][j];
pathResult[i][j] = (i+) * + (k+) * + (j+);
}
} }
}
}
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
if(i!=j)
{
strData += pathResult[i][j].ToString() + " ";
}
}
strData += Environment.NewLine;
}

(转)Floyd算法的更多相关文章

  1. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  2. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  3. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  4. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

  5. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  6. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  7. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  8. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

  9. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  10. 最短路径(Floyd)算法

    #include <stdio.h>#include <stdlib.h>/* Floyd算法 */#define VNUM 5#define MV 65536int P[VN ...

随机推荐

  1. IBM WebSphere MQ介绍安装以及配置服务详解

    首先介绍一下MQ MQ消息队列的简称是一种应用程序对应用程序的通信方法.说白了也就是通过队列的方式来对应用程序进行数据通信.而无需专用链接来链接它们. MQ的通讯方式 1.数据报的方式 Datagra ...

  2. day 26 网络通讯流程 初识socke

    一. *** C/S架构:客户端(client)/服务端(server)架构, B/S架构:浏览器(browser) / 服务端(server)架构 软件cs架构:浏览器,qq,微信,陌陌等等 硬件c ...

  3. 【转】iOS编译OpenSSL静态库(使用脚本自动编译)

    原文网址:https://www.jianshu.com/p/651513cab181 本篇文章为大家推荐两个脚本,用来iOS系统下编译OpenSSL通用库,如果想了解编译具体过程,请参看<iO ...

  4. NET设计模式 第三部分 结构型模式(7):适配器模式(Adapter Pattern)

    适配器模式(Adapter Pattern) ——.NET设计模式系列之八 Terrylee,2006年2月 概述 在软件系统中,由于应用环境的变化,常常需要将“一些现存的对象”放在新的环境中应用,但 ...

  5. MVC4.0,并完美结合Razor引擎

    本文主要解决“当前上下文不存在ViewBag”的问题, 在View视图实际使用过程中,如果引用不正确会提示“当前上下文不存在ViewBag”,首先需要引入“Microsoft.CSharp”类库 然后 ...

  6. ML: 聚类算法R包-对比

    测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...

  7. 1.linux6 x86-64 RPM包安装mysql5.7.20

    注意版本和此次更新时间 2017-12-03  版本:mysql-5.7.20-1.el6.x86_64  环境:linux6.x ​官方下载地址: wget https://dev.mysql.co ...

  8. 解决Windows远程桌面连接每次都提示输入密码的问题,远程桌面记不住密码

    FROM:http://www.veryhuo.com/a/view/80444.html Windows 远程桌面连接几乎每天都用,所以使用的方便性非常重要.如果你经常用,也许会发现在某些系统中,每 ...

  9. DataGridView之编码列重绘

    实现方式如下: private void dgvRelation_RowPostPaint(object sender, DataGridViewRowPostPaintEventArgs e) { ...

  10. sql Find_IN_SET 用法

    字段以 1,2,3,4 格式存储的SELECT * from test where FIND_IN_SET('15',btype) GROUP_CONCAT + group_by