分类算法之朴素贝叶斯分类(Naive Bayesian classification)
1.1、摘要
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。
1.2、分类问题综述
对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。
从数学角度来说,分类问题可做如下定义:
已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模糊数学里的模糊集情况)
其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。
这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。
例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。
1.3、贝叶斯分类的基础——贝叶斯定理
每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:
表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:
1.4、朴素贝叶斯分类
1.4.1、朴素贝叶斯分类的原理与流程
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
朴素贝叶斯分类的正式定义如下:
1、设为一个待分类项,而每个a为x的一个特征属性。
2、有类别集合。
3、计算。
4、如果,则。
那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:
1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。
2、统计得到在各类别下各个特征属性的条件概率估计。即。
3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:
因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:
根据上述分析,朴素贝叶斯分类的流程可以由下图表示(暂时不考虑验证):
可以看到,整个朴素贝叶斯分类分为三个阶段:
第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。
第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。
第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。
1.4.2、估计类别下特征属性划分的条件概率及Laplace校准
这一节讨论P(a|y)的估计。
由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。
当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:
而
因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。均值与标准差的计算在此不再赘述。
另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。
1.4.3、朴素贝叶斯分类实例:检测SNS社区中不真实账号
下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。
这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。
如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。
首先设C=0表示真实账号,C=1表示不真实账号。
1、确定特征属性及划分
这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。
我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。
下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2},a1:{a<=0.1, 0.1<a<0.8, a>=0.8},a3:{a=0(不是),a=1(是)}。
2、获取训练样本
这里使用运维人员曾经人工检测过的1万个账号作为训练样本。
3、计算训练样本中每个类别的频率
用训练样本中真实账号和不真实账号数量分别除以一万,得到:
4、计算每个类别条件下各个特征属性划分的频率
5、使用分类器进行鉴别
下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。
可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。
1.5、分类器的评价
虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。
首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。
通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。
http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html
分类算法之朴素贝叶斯分类(Naive Bayesian classification)的更多相关文章
- 算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比 ...
- 分类算法之朴素贝叶斯分类(Naive Bayesian classification)
分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感.而每次 ...
- (ZT)算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
https://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html 0.写在前面的话 我个人一直很喜欢算 ...
- SparkMLib分类算法之朴素贝叶斯分类
SparkMLib分类算法之朴素贝叶斯分类 (一)朴素贝叶斯分类理解 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关.举个例子, ...
- 分类算法之朴素贝叶斯分类(Naive Bayesian Classification)
1.什么是分类 分类是一种重要的数据分析形式,它提取刻画重要数据类的模型.这种模型称为分类器,预测分类的(离散的,无序的)类标号.例如医生对病人进行诊断是一个典型的分类过程,医生不是一眼就看出病人得了 ...
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
- 十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算,也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:N ...
- (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)
https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...
- 文本分类(TFIDF/朴素贝叶斯分类器/TextRNN/TextCNN/TextRCNN/FastText/HAN)
目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway N ...
随机推荐
- Android开发之炫酷MD风格
文章转自:一点点征服的 http://www.cnblogs.com/ldq2016/p/5217590.html 安卓开发中非常炫的效果集合 这几天开发的时候,想做一些好看而且酷炫的特效,于是又开始 ...
- (转)无效的CurrentPageIndex 值。它必须大于等于0 且小于PageCount 解决方案
第一种: 当以某种条件来查询的时候 其中的结果是以一个结果为条件的datagrid分页 采用字查询到条件下加入如下代码: [c-sharp] view plaincopyprint? protecte ...
- dpdk中文文档
Linux平台上DPDK入门指南 1. 简介 1.1. 文档地图 2. 系统要求 2.1. X86 上预先设置 BIOS 2.2. 编译DPDK 2.3. 运行DPDK应用程序 3. 使用源码编译DP ...
- Python.SQLAlchemy.0
1. SQLAlchemy and You http://lucumr.pocoo.org/2011/7/19/sqlachemy-and-you/ 2. Overview http://docs.s ...
- How to Solve Lonsdor K518ISE Abnormal Display by Factory Resetting
Here’s the working solution to Lonsdor K518ISE Key Programmer abnormal display after upgrade. Proble ...
- JoyOI1035 棋盘覆盖
原题链接 对棋盘染色,坐标和为奇数的染黑,偶数为白.这时会发现对于相同颜色的格子,是无法放置骨牌的,这样我们就将所有格子分成两类,然后根据能否放置骨牌连边,最后就是求二分图最大匹配了. 这里我是用的匈 ...
- About the Cron Expression
About the Cron Expression Cron is use in Linux for the time schedule Format Seconds Minutes Hours Da ...
- MySQL 快速复数据库的方法
为了方便快速复制一个数据库,可以用以下命令将db1数据库的数据以及表结构复制到newdb数据库 创建新的数据库 #mysql -u root -p123456 mysql>CREATE DATA ...
- 科学技术库Numpy
一.生成矩形操作 1)numpy获取的数据是以 “,” 为分割的数据结构,来生成矩阵 注意:skip_header=1 去掉行首,即说明行 ,Cao jin,,,python,-- ,张二毛,,, ...
- 数据分析处理库pandas及可视化库Matplotlib
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) pr ...