Kosaraju 算法学习

这星期捣鼓了一个新的算法——Kosaraju算法

今天分享给大家

简介

Kosaraju算法,其实与tarjan算法差不多。但是码量较小,容易记忆。其时间复杂度与tarjan算法一样,为O(n+m),所以,某种程度上来说Kosaraju可以替代tarjan算法。

算法思路

如果直接让我讲Kosaraju算法到底是基于什么实现的,我肯定讲不出来,但只能知道它的基本思路——dfs两次。

就是这么简单,当然,为什么广大的oier不学习Kosaraju算法呢?因为麻烦。

Kosaraju算法中将利用到反边(有向图),使其代码雅观度大大降低。。。

废话说了那么多,言归正传。Kosaraju算法就是先用正边dfs一次,将dfs时每遍历完一个点就push到一个栈中。第二次从栈顶节点反边遍历一次,记录一下id就好了。。。

PS:我真的证明不来QWQ

核心代码

void dfs_1(int x){
vis[x]=1;
for(int i=fir[x];i;i=nxt[i]){
if(vis[son[i]]==0) dfs_1(son[i]);
}
d[++t]=x;
}
void dfs_2(int x){
vis[x]=t;
s[t]++;
for(int i=fir2[x];i;i=nxt2[i]){
if(vis[son2[i]]==0) dfs_2(son2[i]);
}
}
void Kosaraju(){
t=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
if(vis[i]==0) dfs_1(i);
} memset(vis,0,sizeof(vis));t=0;
for(int i=n;i>=1;i--){
if(vis[d[i]]==0) t++,dfs_2(d[i]);
}
}

写在最后

祝大家2019新年快乐!(手动滑稽)

Kosaraju算法学习的更多相关文章

  1. 算法学习笔记:Kosaraju算法

    Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 ...

  2. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

  3. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  4. Kosaraju 算法检测有向图的强连通性

    给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...

  5. Kosaraju 算法查找强连通分支

    有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...

  6. 半连通分量--Tarjan/Kosaraju算法

    一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...

  7. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  8. Kosaraju 算法

    Kosaraju 算法 一.算法简介 在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量.它利用了一 ...

  9. DSP算法学习-过采样技术

    DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...

随机推荐

  1. 知乎网的CSS命名规律研究

    笔者是一名Java程序员,前端css和图片本不是我的工作,亦不是我的强项.但很多时候,公司并没有合适的美工,只有自己动手.一般的css技术,倒是没有问题,定位,盒子,浮动,布局等等,都能做.但每每完成 ...

  2. 【bzoj1044】木棍分割

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  3. 【BZOJ1484】[HNOI2009]通往城堡之路 (贪心)

    [BZOJ1484][HNOI2009]通往城堡之路 (贪心) 题面 BZOJ 洛谷 题解 我大概是不会的. 大概是,首先把所有的人全部弄成最低的值,再一次次拔高一个后缀. 其他的全是抄的,百度随便找 ...

  4. RK哈希(Rabin_Karp 哈希)

    Rabin_Karp 哈希通过比较hash值是否相等来比较每个字符串是否相等有概率出错(很小)字符串x1,x2,x3……xk基底e;模数mo;hash=(xk*e^0+xk-1*e^1+......+ ...

  5. 收藏:Windows消息机制

    百度百科介绍的windows消息机制也不错:http://baike.baidu.com/view/672379.htm Windows的应用程序一般包含窗口(Window),它主要为用户提供一种可视 ...

  6. word默认字体与大小

    对于红色地方单击,“正文框”按右键+修改 修改字体大小 修改中文和西文时的字体 注意宋体和宋体 (中文正文)是不同的

  7. MFC Activex 开发、ocx打包成cab、部署、测试、自动升级

    小小抱怨下:也许是MFC现在用的人少的缘故.在国内和国外都基本上找不到什么全的资料.特别是ocx打包成Cab时的安装文件inf的编写方面,国内基本上是copy,抄的还一知半解.查找个资源真心的累啊.现 ...

  8. Spark记录-Scala异常与处理

    Scala try-catch语句 Scala提供try和catch块来处理异常.try块用于包含可疑代码.catch块用于处理try块中发生的异常.可以根据需要在程序中有任意数量的try...cat ...

  9. bzoj千题计划258:bzoj3123: [Sdoi2013]森林

    http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...

  10. 织梦 dedecms 首页调用公司简介的内容

    首页调用公司简介的代码: {dede:sql sql='Select content,substring(content,1,300) as content from dede_arctype whe ...