import cv2 as cv
import numpy as np """
matchTemplate():
参数image:待搜索的图像(大图)
参数temple:搜索模板,需要和原图一样的数据类型且尺寸不能大于源图像
参数result:比较结果的映射图像,其必须为单通道,32位浮点型图像,如果原图(待搜索图像)尺寸为W*H,而temple尺寸为w*h,则result尺寸一定是
(W-w+1)*(H-h+1)
参数method:指定匹配方法,有如下几种:
CV_TM_SQDIFF:平方差匹配法
CV_TM_SQDIFF_NORMED:归一化平方差匹配法
CV_TM_CCORR:相关匹配法
CV_TM_CCORR_NORMED:归一化相关匹配法
CV_TM_CCOEFF:系数匹配法
CV_TM_CCOEFF_NORMED:化相关系数匹配法
"""
"""
minMaxLoc()函数
作用:一维数组当作向量,寻找矩阵中最小值和最大值位置
""" def match_image():
target = cv.imread(r"C:\Users\lenovo\Desktop\test\2.jpg")
temple = cv.imread(r"C:\Users\lenovo\Desktop\test\1.png")
# shape是获取矩阵的长度
print(temple.shape)
# 获取到小图的尺寸
th, tw = temple.shape[:2]
result = cv.matchTemplate(target, temple, cv.TM_SQDIFF_NORMED)
# 返回匹配的最小坐标
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
tl=min_loc
print(tl)
br = (int(tl[0]) + tw, int(tl[1]) + th)
print('br==',br)
cv.rectangle(target, tl, br, [0, 255, 0])
cv.imshow("匹配结果" + np.str(cv.TM_SQDIFF_NORMED), target) match_image()
cv.waitKey(0)
cv.destroyAllWindows()

cv2.matchTemplate()函数的应用,匹配图片后画出矩形的更多相关文章

  1. 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)

    1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出 ...

  2. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  3. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  4. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  5. OpenCvSharp 通过特征点匹配图片

    现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思. 这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应 ...

  6. 【Auto.js images.matchTemplate() 函数的特点】

    Auto.js  images.matchTemplate() 函数的特点 官方文档:https://hyb1996.github.io/AutoJs-Docs/#/images?id=imagesm ...

  7. android拍照获得图片及获得图片后剪切设置到ImageView

    ok,这次的项目需要用到设置头像功能,所以做了个总结,直接进入主题吧. 先说说怎么 使用android内置的相机拍照然后获取到这张照片吧 直接上代码: Intent intentFromCapture ...

  8. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  9. 第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器

    第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器 编写spiders爬虫文件循环 ...

随机推荐

  1. sql小知识点

    1]sql去重复 select * from View where SfzId in ())

  2. 【网摘】C#中TransactionScope的使用方法和原理

    时间 2013-08-12 19:59:34  51CTO推荐博文 原文  http://cnn237111.blog.51cto.com/2359144/1271600 在.net 1.1的时代,还 ...

  3. IIS安装以及发布

    控制面板-所有控制面板项-程序和功能-打开或关闭windows功能-Internet 信息服务,里面全部打钩点击确实.安装完成.     控制面板-管理工具-Internet 信息服务管理器-双击打开 ...

  4. Java开发笔记(序)章节目录

    现将本博客的Java学习文章整理成以下笔记目录,方便查阅. 第一章 初识JavaJava开发笔记(一)第一个Java程序Java开发笔记(二)Java工程的帝国区划Java开发笔记(三)Java帝国的 ...

  5. MyBatis之整合Spring

    MyBatis之整合Spring 整合思路: 1.SqlSessionFactory对象应该放到spring容器中作为单例存在 2.传统dao的开发方式中,应该从spring容器中获得sqlSessi ...

  6. 高通平台如何避免误入FFBM模式

    前面两篇博客分别介绍了通过fastboot和QFIL工具退出FFBM模式的方法.虽然售后的同学可以这么指导用户做恢复,但步骤多操作也麻烦,且属于事后处理,如果大面积高概率地出现,会严重影响用户体验.这 ...

  7. 数据库原理 - 序列7 - Binlog与主从复制

    本文节选自作者书籍<软件架构设计:大型网站技术架构与业务架构融合之道>.作者微信公众号:架构之道与术.公众号底部菜单有书友群可以加入,与作者和其他读者进行深入讨论.也可以在京东.天猫上购买 ...

  8. vue watch监听验证码时,axios延迟发送post请求。

    标题写的全面一些,方便其他人检索,我就是找了半天找不到资料,最后自己搞定了. 原理: 每次监听到输入值变化,就打一个时间戳,然后暂停2秒再去提交post验证. 但是每次提交前,判断一下之前打的时间戳和 ...

  9. sqlserver简便创建用户并授权

    很多研发人员程序连接SQL Server直接用的就是SA帐号.如果对数据库管理稍微严格一点的话,就不应该给应用程序这种权限,通常应用程序只需要进行增删改查,而很少有DDL操作,因此配置帐号时应该遵循“ ...

  10. Redis基础一(Linux)

    Redis概述 1.是一个开源的,先进的<key,value>存储,并用与构建高性能,可扩展的应用程序的完美解决方案 2.从它的许多竞争继承来的三个主要特点: l  Redis数据库完全在 ...