import cv2 as cv
import numpy as np """
matchTemplate():
参数image:待搜索的图像(大图)
参数temple:搜索模板,需要和原图一样的数据类型且尺寸不能大于源图像
参数result:比较结果的映射图像,其必须为单通道,32位浮点型图像,如果原图(待搜索图像)尺寸为W*H,而temple尺寸为w*h,则result尺寸一定是
(W-w+1)*(H-h+1)
参数method:指定匹配方法,有如下几种:
CV_TM_SQDIFF:平方差匹配法
CV_TM_SQDIFF_NORMED:归一化平方差匹配法
CV_TM_CCORR:相关匹配法
CV_TM_CCORR_NORMED:归一化相关匹配法
CV_TM_CCOEFF:系数匹配法
CV_TM_CCOEFF_NORMED:化相关系数匹配法
"""
"""
minMaxLoc()函数
作用:一维数组当作向量,寻找矩阵中最小值和最大值位置
""" def match_image():
target = cv.imread(r"C:\Users\lenovo\Desktop\test\2.jpg")
temple = cv.imread(r"C:\Users\lenovo\Desktop\test\1.png")
# shape是获取矩阵的长度
print(temple.shape)
# 获取到小图的尺寸
th, tw = temple.shape[:2]
result = cv.matchTemplate(target, temple, cv.TM_SQDIFF_NORMED)
# 返回匹配的最小坐标
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
tl=min_loc
print(tl)
br = (int(tl[0]) + tw, int(tl[1]) + th)
print('br==',br)
cv.rectangle(target, tl, br, [0, 255, 0])
cv.imshow("匹配结果" + np.str(cv.TM_SQDIFF_NORMED), target) match_image()
cv.waitKey(0)
cv.destroyAllWindows()

cv2.matchTemplate()函数的应用,匹配图片后画出矩形的更多相关文章

  1. 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)

    1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出 ...

  2. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  3. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  4. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

  5. OpenCvSharp 通过特征点匹配图片

    现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思. 这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应 ...

  6. 【Auto.js images.matchTemplate() 函数的特点】

    Auto.js  images.matchTemplate() 函数的特点 官方文档:https://hyb1996.github.io/AutoJs-Docs/#/images?id=imagesm ...

  7. android拍照获得图片及获得图片后剪切设置到ImageView

    ok,这次的项目需要用到设置头像功能,所以做了个总结,直接进入主题吧. 先说说怎么 使用android内置的相机拍照然后获取到这张照片吧 直接上代码: Intent intentFromCapture ...

  8. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  9. 第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器

    第三百四十一节,Python分布式爬虫打造搜索引擎Scrapy精讲—编写spiders爬虫文件循环抓取内容—meta属性返回指定值给回调函数—Scrapy内置图片下载器 编写spiders爬虫文件循环 ...

随机推荐

  1. 为Qt视图中的文字添加彩虹渐变效果

    将view中的文本内容用自定义的颜色显示是一种十分常见的需求.今天我们稍微改变些"花样". 本文索引 需求定义 需求分析 代码实现 思考题 需求定义 我们的需求很简单,现在有一些在 ...

  2. sql:常用函数

    1.验证是否是null,是则替换ISNULL(Weight, 50) SELECT AVG(ISNULL(Weight, 50))FROM Production.Product; 2.连接多个字符串  ...

  3. .Net学前入门

    概念:.NET和C# .NET/dotnet:一般指.Net Framework框架,是一种平台,一种技术: .net由.net平台以及.Net Framework框架组成,我们可以把.net平台比喻 ...

  4. 使用Golang搭建web服务

    如何用golang搭建一个web服务呢?菜鸟官网的go web编程教程已经介绍了web服务器的工作原理,这里就不赘述了. 我们先看个例子:http.go package main import ( & ...

  5. headfirst设计模式(5)—工厂模式体系分析及抽象工厂模式

    先编一个这么久不写的理由 上周我终于鼓起勇气翻开了headfirst设计模式这本书,看看自己下一个设计模式要写个啥,然后,我终于知道我为啥这么久都没写设计模式了,headfirst的这个抽象工厂模式, ...

  6. 浅谈SQL Server数据内部表现形式

    在上篇文章 浅谈SQL Server内部运行机制 中,与大家分享了SQL Server内部运行机制,通过上次的分享,相信大家已经能解决如下几个问题: 1.SQL Server 体系结构由哪几部分组成? ...

  7. coolite 获取新的页面链接到当前页面指定位置Panel的运用

    如下图所示,点击温州市文成县之前,右边是一片空白,点击后生成新的页面 html运用到了coolite的Panel控件 <Center> <ext:Panel ID="Pan ...

  8. 一个特殊的SQL Server阻塞案例分析

    上周,在SQL Server数据库下面遇到了一个有意思的SQL阻塞(SQL Blocking)案例.其实个人对SQL Server的阻塞还是颇有研究的.写过好几篇相关文章. 至于这里为什么要总结一下这 ...

  9. zabbix调用api检索方法

    环境 zabbix:172.16.128.16:zabbix_web:172.16.16.16/zabbix 用户名:Admin 密码:zabbix 获取的数据仅做参考,以Linux发送HTTP的PO ...

  10. Windows上安装MySQL的完整教程

    1.     首先去官方网站下载压缩文件:https://dev.mysql.com/downloads/mysql/ 2.     解压下载的文件. 3.     将解压的所有文件放在一个文件夹里( ...