In this blog post I will show you kafka integration with ganglia, this is very interesting & important topic for those who want to do bench-marking, measure performance by monitoring specific Kafka metrics via ganglia.

Before going ahead let me briefly explain about what is Kafka and Ganglia.

Kafka – Kafka is open source distributed message broker project developed by Apache, Kafka provides a unified, high-throughput, low-latency platform for handling real-time data feeds.

Ganglia – Ganglia is distributed system for monitoring high performance computing systems such as grids, clusters etc.

Now lets get started, In this example we have a Hadoop cluster with 3 Kafka brokers, First we will see how to install and configure ganglia on these machines.

Step 1: Setup and Configure Ganglia gmetad and gmond

First thing is you need to install EPEL repo on all the nodes

yum install epel-release

On master node (ganglia-server) download below packages

yum install rrdtool ganglia ganglia-gmetad ganglia-gmond ganglia-web httpdphpaprapr-util

On slave nodes (ganglia-client) download below packages

yum install ganglia-gmond

On master node do the following

chown apache:apache -R /var/www/html/ganglia

Edit below config file and allow ganglia webpage from any IP

vi /etc/httpd/conf.d/ganglia.conf

It should look like below:

#
# Ganglia monitoring system php web frontend
#
Alias /ganglia /usr/share/ganglia
<Location /ganglia>
Order deny,allow
Allow from all                    #this is very important or else you won’t be able to see ganglia web UI
Allow from 127.0.0.1
Allow from ::1
# Allow from .example.com
</Location>

On master node edit gmetadconfig file and it should look like below (Please change highlighted IP address to your ganglia-server private IP address)

#cat /etc/ganglia/gmetad.conf |grep -v ^#
data_source "hadoopkafka" 172.30.0.81:8649
gridname "Hadoop-Kafka"
setuid_username ganglia
case_sensitive_hostnames 0

On master node edit gmond.conf, keep other parameters to default except below ones

Copy gmond.conf to all other nodes in the cluster

cluster {
name = "hadoopkafka"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"
}
/* The host section describes attributes of the host, like the location */
host {
location = "unspecified"
}
/* Feel free to specify as many udp_send_channels as you like. Gmond
used to only support having a single channel */
udp_send_channel {
#bind_hostname = yes # Highly recommended, soon to be default.
                       # This option tells gmond to use a source address
                       # that resolves to the machine's hostname. Without
                       # this, the metrics may appear to come from any
                       # interface and the DNS names associated with
                       # those IPs will be used to create the RRDs.
#mcast_join = 239.2.11.71
host = 172.30.0.81
port = 8649
#ttl = 1
}
/* You can specify as many udp_recv_channels as you like as well. */
udp_recv_channel {
#mcast_join = 239.2.11.71
port = 8649
#bind = 239.2.11.71
#retry_bind = true
# Size of the UDP buffer. If you are handling lots of metrics you really
# should bump it up to e.g. 10MB or even higher.
# buffer = 10485760
}

Start apache service on master node

service httpd start

Start gmetad service on master node

service gmetad start

Start gmond service on every node in the server

service gmond start

This is it!  Now you can see basic ganglia metrics by visiting web UI at http://IP-address-of-ganglia-server/ganglia

Step 2: Ganglia Integration with Kafka

Enable JMX Monitoring for Kafka Brokers

In order to get custom Kafka metrics we need to enable JMX monitoring for Kafka Broker Daemon.

To enable JMX Monitoring for Kafka broker, please follow below instructions:

Edit kafka-run-class.sh and modify KAFKA_JMX_OPTS variable like below (please replace red text with your Kafka Broker hostname)

KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Djava.rmi.server.hostname=kafka.broker.hostname -Djava.net.preferIPv4Stack=true"

Add below line in kafka-server-start.sh (in case of Hortonworks hadoop, path is /usr/hdp/current/kafka-broker/bin/kafka-server-start.sh)

export JMX_PORT=${JMX_PORT:-9999}

That’s it! Please do the above steps on all Kafka brokers and restart the kafka brokers ( manually or via management UI whatever applicable)

Verify that JMX port has been enabled!

 You can use jconsole to do so.

Download, install and configure jmxtrans

Download jmxtrans rpm from below link and install it using rpm command

http://code.google.com/p/jmxtrans/downloads/detail?name=jmxtrans-250-0.noarch.rpm&can=2&q=

Once you have installed jmxtrans, please make sure that java &jps configured in $PATH variable

Write a JSON for fetching MBeans on each Kafka Broker.

I have written JSON for monitoring custom Kafka metrics, please download it from here.

Please note that, you need to replace “IP_address_of_kafka_broker” with your kafka broker’s IP address in downloaded JSON, same is the case for ganglia server’s IP address.

Once you are done with writing JSON, please verify the syntax using any online JSON validator( http://jsonlint.com/ ).

Start the jmxtrans using below command

cd /usr/share/jmxtrans/
sh jmxtrans.sh start $name-of-the-json-file

Verify that jmxtrans has started successfully using simple “ps” command

Repeat above procedure on all Kafka brokers

 

Verify custom metrics

Login to ganglia server and go to rrd directory ( by default it is /var/lib/ganglia/rrds/ ) and check if there are new rrd files for kafka metrics.

You should see output like below (output is truncated)

Go to ganglia web UI –>  select hadoopkafka from below highlighted dropdown

Select “custom.metrics” from below highlighted dropdown

That’s all! 

Kafka integration with Ganglia的更多相关文章

  1. Structured Streaming + Kafka Integration Guide 结构化流+Kafka集成指南 (Kafka broker version 0.10.0 or higher)

    用于Kafka 0.10的结构化流集成从Kafka读取数据并将数据写入到Kafka. 1. Linking 对于使用SBT/Maven项目定义的Scala/Java应用程序,用以下工件artifact ...

  2. Spark Streaming + Kafka Integration Guide原文翻译及解析

    前面写了关于kafka和spark streaming的结合使用(https://www.cnblogs.com/qfxydtk/p/11662591.html),其具体使用用法其实来自于原文:htt ...

  3. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  4. Spark Streaming+Kafka

    Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...

  5. Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...

  6. 5分钟spark streaming实践之 与kafka联姻

    你:kafka是什么? 我:嗯,这个嘛..看官网. Apache Kafka® is a distributed streaming platform Kafka is generally used ...

  7. Offset Management For Apache Kafka With Apache Spark Streaming

    An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming ...

  8. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...

  9. 【Spark】SparkStreaming-输出到Kafka

    SparkStreaming-输出到Kafka sparkstreaming output kafka_百度搜索 SparkStreaming采用直连方式(Direct Approach)获取Kafk ...

随机推荐

  1. 爬虫框架之Scrapy(四 ImagePipeline)

    ImagePipeline 使用scrapy框架我们除了要下载文本,还有可能需要下载图片,scrapy提供了ImagePipeline来进行图片的下载. ImagePipeline还支持以下特别的功能 ...

  2. Docker 搜索镜像

    文章首发个人网站: https://www.exception.site/docker/docker-search-image 本文中,您将学习 Docker 如何搜索镜像? 一.search 命令 ...

  3. Python自省

    自省就是通过一定机制查询到对象的内部结构,也就是运行时获取对象内部的属性以及类型,在Python中dir(),type(), hasattr(), isinstance()都是很好的自省例子 #!/u ...

  4. 一次node-sass安装记录

    node-sass的版本是3.9.3 Please restart this script from an administrative PowerShell! 在当前powershell中执行下命令 ...

  5. SpringBoot2 application.properties方式加载配置文件

    application.properties jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://127.0.0.1:33 ...

  6. Struts2笔记_拦截器

    A.拦截器是什么 --- Interceptor:拦截器,起到拦截Action的作用. ---Filter:过滤器,过滤从客户端向服务器发送的请求. ---Interceptor:拦截器,拦截是客户端 ...

  7. DRDS分布式SQL引擎—执行计划介绍

    摘要: 本文着重介绍 DRDS 执行计划中各个操作符的含义,以便用户通过查询计划了解 SQL 执行流程,从而有针对性的调优 SQL. DRDS分布式SQL引擎 — 执行计划介绍 前言 数据库系统中,执 ...

  8. 了解AJAX

    1.如何打开终端的快捷键 Window+R==>CMD==>ipconfig 动态页面:跟后台发生数据交互的页面. 前后台数据交互依赖的一项技术叫 ajax. 1. js的异步操作 (1) ...

  9. vue学习记录②(hello world!)

    接着上篇vue-cli脚手架构建项目结构建好项目之后,就开始写个“hello world!”吧~~~ vue玩的都是组件,所以开发的也是组件. 1.新建helloworld.vue.(删除Hello. ...

  10. vue-render函数和插槽

    Vue render函数,官方文档定义绝大部分时候我们使用template 来创建html 模板,但是纯html 和css都基本上都不具有编程能力,而当我们想使用 javascript的编程能力时,我 ...