In this blog post I will show you kafka integration with ganglia, this is very interesting & important topic for those who want to do bench-marking, measure performance by monitoring specific Kafka metrics via ganglia.

Before going ahead let me briefly explain about what is Kafka and Ganglia.

Kafka – Kafka is open source distributed message broker project developed by Apache, Kafka provides a unified, high-throughput, low-latency platform for handling real-time data feeds.

Ganglia – Ganglia is distributed system for monitoring high performance computing systems such as grids, clusters etc.

Now lets get started, In this example we have a Hadoop cluster with 3 Kafka brokers, First we will see how to install and configure ganglia on these machines.

Step 1: Setup and Configure Ganglia gmetad and gmond

First thing is you need to install EPEL repo on all the nodes

yum install epel-release

On master node (ganglia-server) download below packages

yum install rrdtool ganglia ganglia-gmetad ganglia-gmond ganglia-web httpdphpaprapr-util

On slave nodes (ganglia-client) download below packages

yum install ganglia-gmond

On master node do the following

chown apache:apache -R /var/www/html/ganglia

Edit below config file and allow ganglia webpage from any IP

vi /etc/httpd/conf.d/ganglia.conf

It should look like below:

#
# Ganglia monitoring system php web frontend
#
Alias /ganglia /usr/share/ganglia
<Location /ganglia>
Order deny,allow
Allow from all                    #this is very important or else you won’t be able to see ganglia web UI
Allow from 127.0.0.1
Allow from ::1
# Allow from .example.com
</Location>

On master node edit gmetadconfig file and it should look like below (Please change highlighted IP address to your ganglia-server private IP address)

#cat /etc/ganglia/gmetad.conf |grep -v ^#
data_source "hadoopkafka" 172.30.0.81:8649
gridname "Hadoop-Kafka"
setuid_username ganglia
case_sensitive_hostnames 0

On master node edit gmond.conf, keep other parameters to default except below ones

Copy gmond.conf to all other nodes in the cluster

cluster {
name = "hadoopkafka"
owner = "unspecified"
latlong = "unspecified"
url = "unspecified"
}
/* The host section describes attributes of the host, like the location */
host {
location = "unspecified"
}
/* Feel free to specify as many udp_send_channels as you like. Gmond
used to only support having a single channel */
udp_send_channel {
#bind_hostname = yes # Highly recommended, soon to be default.
                       # This option tells gmond to use a source address
                       # that resolves to the machine's hostname. Without
                       # this, the metrics may appear to come from any
                       # interface and the DNS names associated with
                       # those IPs will be used to create the RRDs.
#mcast_join = 239.2.11.71
host = 172.30.0.81
port = 8649
#ttl = 1
}
/* You can specify as many udp_recv_channels as you like as well. */
udp_recv_channel {
#mcast_join = 239.2.11.71
port = 8649
#bind = 239.2.11.71
#retry_bind = true
# Size of the UDP buffer. If you are handling lots of metrics you really
# should bump it up to e.g. 10MB or even higher.
# buffer = 10485760
}

Start apache service on master node

service httpd start

Start gmetad service on master node

service gmetad start

Start gmond service on every node in the server

service gmond start

This is it!  Now you can see basic ganglia metrics by visiting web UI at http://IP-address-of-ganglia-server/ganglia

Step 2: Ganglia Integration with Kafka

Enable JMX Monitoring for Kafka Brokers

In order to get custom Kafka metrics we need to enable JMX monitoring for Kafka Broker Daemon.

To enable JMX Monitoring for Kafka broker, please follow below instructions:

Edit kafka-run-class.sh and modify KAFKA_JMX_OPTS variable like below (please replace red text with your Kafka Broker hostname)

KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false -Djava.rmi.server.hostname=kafka.broker.hostname -Djava.net.preferIPv4Stack=true"

Add below line in kafka-server-start.sh (in case of Hortonworks hadoop, path is /usr/hdp/current/kafka-broker/bin/kafka-server-start.sh)

export JMX_PORT=${JMX_PORT:-9999}

That’s it! Please do the above steps on all Kafka brokers and restart the kafka brokers ( manually or via management UI whatever applicable)

Verify that JMX port has been enabled!

 You can use jconsole to do so.

Download, install and configure jmxtrans

Download jmxtrans rpm from below link and install it using rpm command

http://code.google.com/p/jmxtrans/downloads/detail?name=jmxtrans-250-0.noarch.rpm&can=2&q=

Once you have installed jmxtrans, please make sure that java &jps configured in $PATH variable

Write a JSON for fetching MBeans on each Kafka Broker.

I have written JSON for monitoring custom Kafka metrics, please download it from here.

Please note that, you need to replace “IP_address_of_kafka_broker” with your kafka broker’s IP address in downloaded JSON, same is the case for ganglia server’s IP address.

Once you are done with writing JSON, please verify the syntax using any online JSON validator( http://jsonlint.com/ ).

Start the jmxtrans using below command

cd /usr/share/jmxtrans/
sh jmxtrans.sh start $name-of-the-json-file

Verify that jmxtrans has started successfully using simple “ps” command

Repeat above procedure on all Kafka brokers

 

Verify custom metrics

Login to ganglia server and go to rrd directory ( by default it is /var/lib/ganglia/rrds/ ) and check if there are new rrd files for kafka metrics.

You should see output like below (output is truncated)

Go to ganglia web UI –>  select hadoopkafka from below highlighted dropdown

Select “custom.metrics” from below highlighted dropdown

That’s all! 

Kafka integration with Ganglia的更多相关文章

  1. Structured Streaming + Kafka Integration Guide 结构化流+Kafka集成指南 (Kafka broker version 0.10.0 or higher)

    用于Kafka 0.10的结构化流集成从Kafka读取数据并将数据写入到Kafka. 1. Linking 对于使用SBT/Maven项目定义的Scala/Java应用程序,用以下工件artifact ...

  2. Spark Streaming + Kafka Integration Guide原文翻译及解析

    前面写了关于kafka和spark streaming的结合使用(https://www.cnblogs.com/qfxydtk/p/11662591.html),其具体使用用法其实来自于原文:htt ...

  3. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  4. Spark Streaming+Kafka

    Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...

  5. Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...

  6. 5分钟spark streaming实践之 与kafka联姻

    你:kafka是什么? 我:嗯,这个嘛..看官网. Apache Kafka® is a distributed streaming platform Kafka is generally used ...

  7. Offset Management For Apache Kafka With Apache Spark Streaming

    An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming ...

  8. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...

  9. 【Spark】SparkStreaming-输出到Kafka

    SparkStreaming-输出到Kafka sparkstreaming output kafka_百度搜索 SparkStreaming采用直连方式(Direct Approach)获取Kafk ...

随机推荐

  1. [转载]PrintDocument,PrintDialog与PrintPreviewDialog用法总结

    一.使用PrintDocument进行打印 using System; using System.Drawing; using System.Drawing.Printing; using Syste ...

  2. javascript对象和数组之 深拷贝和浅拷贝

    管是在面试中还是我们的项目中经常会用到数组或者对象的深拷贝,下面我就自己总结的分享给大家. 首先要知道什么是深拷贝?什么是浅拷贝? 深拷贝:源对象与拷贝对象互相独立,其中任何一个对象的改动都不会对另外 ...

  3. C#Npoi

    https://download.csdn.net/download/youhmcq/7725559http://www.cnblogs.com/downmoon/archive/2012/04/11 ...

  4. Linux知识要点(文件压缩打包解压缩)

    tar 的选项与参数非常的多!我们只讲几个常用的选项,更多选项您可以自行 man tar 查询啰! 其实最简单的使用 tar 就只要记忆底下的方式即可(gzip方式): 压 缩: tar -zcvf ...

  5. Java注解(Annotation):请不要小看我!

    Java注解是一系列元数据,它提供数据用来解释程序代码,但是注解并非是所解释的代码本身的一部分.注解对于代码的运行效果没有直接影响. 网络上对注解的解释过于严肃.刻板,这并不是我喜欢的风格.尽管这样的 ...

  6. Python爬虫入门教程 45-100 Charles抓取兔儿故事-下载小猪佩奇故事-手机APP爬虫部分

    1. Charles抓取兔儿故事背景介绍 之前已经安装了Charles,接下来我将用两篇博客简单写一下关于Charles的使用,今天抓取一下兔儿故事里面关于小猪佩奇的故事. 爬虫编写起来核心的重点是分 ...

  7. 【Android Studio安装部署系列】十三、Android studio添加和删除Module

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 新建.导入.删除Module是常见的操作,这里简单介绍下. 新建Module File——New——New Module... 选中 ...

  8. SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  9. Java基础系列-Comparable和Comparator

    原创文章,转载请标注出处:<Java基础系列-Comparable和Comparator> 一.概述         Java中的排序是由Comparable和Comparator这两个接 ...

  10. ThinkPHP 5.0/5.1 自定义404界面的配置

    ★ 背景还要啥背景,就是觉得不可能用框架自带的 404 界面呗.可能跟之前的版本配置方法有点区别,在此做一下简单的笔记 框架:ThinkPHP 5.1,ThinkPHP5.0.20 ★ 配置过程♩. ...