Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现
鲁棒局部加权回归
【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/
Ljt
作为一个初学者,水平有限,欢迎交流指正。
算法参考文献:
(1) Robust Locally Weighted Regression and Smoothing Scatterplots (Willism_S.Cleveland)
(2) 数据挖掘中强局部加权回归算法实现 (虞乐,肖基毅)
R实现
#Robust Locally Weighted Regression 鲁棒局部加权回归 # 一元样本值x,y ;待预测样本点xp ;f局部加权窗口大小(一般取1/3~2/3);d局部加权回归阶数;
#time鲁棒局部加权回归次数(一般取2就几乎可以满足收敛);
#step梯度下降法固定步长;error梯度下降法终止误差;maxiter最大迭代次数
RobustLWRegression<-function(x,y,xp,f,d,time,step,error,maxiter){ m<-nrow(x)
r<-floor(f*m) #窗口内的样本量
xl<-abs(x-xp)
xll<-xl[order(xl)]
hr<-xll[r] #h为离xp第r个最近的样本到xp的距离 #三次权值函数(几乎在所有情况下都能够提供充分平滑)
xk<-(x-xp)/hr
w<-ifelse(abs(xk)<1,(1-abs(xk^3))^3,0) #d次回归函数
for(i in 2:d){
x<-cbind(x,x^i)
}
x<-cbind(1,x)
n<-ncol(x) #梯度下降法(固定步长)求局部加权回归的系数
theta<-matrix(0,n,1) #theta 初始值都设置为0
iter<-0
newerror<-1
while((newerror>error)|(iter<maxiter)){
iter<-iter+1
h<-x%*%theta
des<-t(t(w*(h-y))%*%x) #局部加权梯度
new_theta<-theta-step*des #直接设置固定步长
newerror<-t(theta-new_theta)%*%(theta-new_theta)
theta<-new_theta
} #time次鲁棒局部加权回归
for(i in 1:time){
e<-y-x%*%theta
s<-median(e)
#四次权值函数
xb<-e/(6*s)
R_w<-ifelse(abs(xb)<1,(1-xb^2)^2,0) #梯度下降法求鲁棒加权局部回归
R_theta<-matrix(0,n,1) #theta 初始值都设置为0
R_iter<-0
R_newerror<-1
while((R_newerror>error)|(R_iter<maxiter)){
R_iter<-R_iter+1
R_h<-x%*%R_theta
R_des<-t(t(w*R_w*(R_h-y))%*%x) #鲁棒局部加权梯度
R_new_theta<-R_theta-step*R_des #直接设置固定步长
R_newerror<-t(R_theta-R_new_theta)%*%(R_theta-R_new_theta)
R_theta<-R_new_theta
}
theta<-R_theta
} for(i in 2:d){
xp<-cbind(xp,xp^i)
}
xp<-cbind(1,xp)
yp<-xp%*%theta
# costfunction<-t(x%*%theta-y)%*%(x%*%theta-y)
# result<-list(yp,theta,iter,costfunction)
# names(result)<-c('拟合值','系数','迭代次数','误差')
# result
yp }
实例比较 线性回归、局部加权线性回归和鲁棒局部加权线性回归:
>
> t(x)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
> t(y)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 111 115 121 123 131 130 140 136 142 145 147 151 148 151 148
>
> lm(y~x) Call:
lm(formula = y ~ x) Coefficients:
(Intercept) x
-50.245 2.864 > yy<--50.245+2.864*x
>
> plot(x,y,col='green',pch=20,xlim=c(57,73),ylim=c(109,159))
> lines(x,y,col='green')
> lines(x,yy,col='black')
>
> g<-apply(x,1,function(xp){LWLRegression(x,y,xp,3,1e-7,100000,stepmethod=F,step=0.00001,alpha=0.25,beta=0.8)})
>
> points(x,g,col='blue',pch=20)
> lines(x,g,col='blue')
>
> gg<-apply(x,1,function(xp){RobustLWRegression(x,y,xp,0.6,2,2,0.00000001,1e-7,10000)})
>
> points(x,gg,col='red',pch=20)
> lines(x,gg,col='red') > legend('bottomright',legend=c('散点图','拟合直线','局部加权散点图','鲁棒局部加权散点图'),lwd=1,col=c('green','black','blue','red'))
>
Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现的更多相关文章
- Locally Weighted Regression
简单回顾一下线性回归.我们使用了如下变量:\(x\)—输入变量/特征:\(y\)—目标变量:\((x,y)\)—单个训练样本:\(m\)—训练集中的样本数目:\(n\)—特征维度:\((x^{(i)} ...
- 局部加权回归LOWESS
1. LOWESS 用kNN做平均回归: \[ \hat{f(x)} = Ave(y_i | x_i \in N_k(x)) \] 其中,\(N_k(x)\)为距离点x最近k个点组成的邻域集合(nei ...
- Locally Weighted Linear Regression 局部加权线性回归-R实现
局部加权线性回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...
- Locally weighted regression algorithm
在此引出另一种模型:Locally weighted regression algorithm(LWLR/LWR),通过名字我们可以推断,这是一种更加关注局部变化的模型.的确如此,在普通的linear ...
- Locally weighted regression algorithm
之前所讨论的梯度下降算法,其算法模型是“线性回归模型”,我们可以理解为变量与因变量之间的关系是线性的.而现实情况是,使用线性模型去描述所有数据,很容易出现欠拟合(underfitting)的情况:同样 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
- locally weighted regression - CS229
欠拟合和过拟合 看下方的三张图 第一幅拟合为了 y=θ0+θ1xy=θ0+θ1x 的一次函数 第二幅拟合为了y=θ0+θ1x+θ2x2y=θ0+θ1x+θ2x2 的二次函数 第三幅拟合为了 y=∑5j ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
随机推荐
- 安卓高级2 Volley框架的使用案例
初始化类: MyApp.java package qianfeng.com.day37_volley_pull.app; import android.app.Application; import ...
- Objective-C点语法
Objective-C点语法 点语法可以简单的理解成是为了让Java等语言的开发人员能够快速适应OC语言而添加的一个新写法 因为Java里没有指针,也没有[xxx xxx]这种调用方式,都是使用点xx ...
- Android简易实战教程--第四十一话《vitamio网络收音机》
在Android初级教程专栏里面,介绍了Android原生的VideoView和vitamio框架Android视频媒体相关,VideoView和开源框架vitamio.并演示了播放网络视频的对应的D ...
- Swift中if与switch语句使用一例
在Swift中相同的条件处理有if和switch两个语句,我们如何取舍呢? 一种情况下我们只在乎x是否在一个范围内,但并不关心x是否穷尽!换句话说不关心在满足范围条件的其他情况下,此时我们可以考虑用i ...
- TOP-N类查询
Top-N查询 --Practices_29:Write a query to display the top three earners in the EMPLOYEES table. Displa ...
- Django完整的开发一个博客系统
今天花了一些时间搭了一个博客系统,虽然并没有相关于界面的美化,但是发布是没问题的. 开发环境 操作系统:windows 7 64位 Django: 1.96 Python:2.7.11 IDE: Py ...
- Cocos2D两个方法的重构一例
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 在RPG游戏项目的GameSpace类中原来有一个方法: -( ...
- 谈谈spring的缓存
缓存到底扮演了什么角色 请移步: http://hacpai.com/article/1376986299174 在对项目进行优化的时候,我们可以主要从以下三个方面入手: 1 缓存 2 集群 3 异 ...
- scala学习笔记5 (隐式转化/参数/类)
隐式转化: 隐式参数: 隐式类:
- Maven原型骨架及常见问题
关于Maven原型工程的制作就不在这里详细介绍了,具体细节请参考之前的文章:定制Maven原型生成项目 下面分享制作和使用Maven原型工程时碰到的常见问题,以及原型的上传和使用方法. 1.模块路径问 ...