题意:给定一个数,这个数是两个素数的乘积,并给定一个限制L,问是否两个素数中存在小于L的数,若存在输出较小质数,否则打印‘GOOD’。

思路:

1 . x = a * b, a和b都是素数,那么x只能分解为(1,x)或则(a,b),因为 x 只有四个因子1,a,b,x。

2 . 判定某大数y能否被x整除,可以通过求余是否为0判断。大数求余的方法在我的上一篇文章中有证明。

3 . 素数打表,方便快速判断某个数是否为质数。

根据第一个结论,可以知道如果某个素数(这个数小于限制L)能被大数整除,那么这个数就是最小质数,就可以结束判断。

AC代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 1000005;
int vis[maxn], prim[maxn], a[105];
char s[105];

int deal(int n){
	int m = sqrt(n + 0.5);
	memset(vis, 0, sizeof(vis));
	for(int i = 2; i <= m; ++i) if(!vis[i])
		for(int j = i*i; j <= n; j += i) vis[j] = 1;

	int cnt = 0;
	for(int i = 2; i < n; ++i){
		if(!vis[i]) prim[cnt++] = i;
	}
	return cnt;
}

// 转换千进制
int turn(int n){
	memset(a, 0, sizeof(a));
	int c = 0;
	int m = n % 3;
	for(int i = 0; i < m; ++i) a[c] = a[c] * 10 + s[i] - '0';
	if(m) ++c;
	for(int i = m; i < n; i += 3){
		for(int j = i; j < i + 3; ++j)
			a[c] = a[c] * 10 + s[j] - '0';
		++c;
	}
	return c;
} 

bool mod(int x, int n) {
	int m = 0;
	for(int i = 0; i < n; ++i){
		m = (m * 1000+ a[i]) % x;
	}
	if(m == 0) return true;
	return false;
}

int main(){
	int n = deal(maxn);
	int h;
	while(scanf("%s%d", s, &h) == 2 && h){
		int len = strlen(s);
		len = turn(len);
		int flag = 1;
		for(int i = 0; prim[i] < h && i < n; ++i) {
			if(mod(prim[i], len)) {
				printf("BAD %d\n", prim[i]);
				flag = 0;
				break;
			}
		}
		if(flag) printf("GOOD\n");
	}
	return 0;
}

如有不当之处欢迎指出!

poj2635 同余定理 + 素数筛法的更多相关文章

  1. [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11978   A ...

  2. POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15767   A ...

  3. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 6069 Counting Divisors(区间素数筛法)

    题意:...就题面一句话 思路:比赛一看公式,就想到要用到约数个数定理 约数个数定理就是: 对于一个大于1正整数n可以分解质因数: 则n的正约数的个数就是 对于n^k其实就是每个因子的个数乘了一个K ...

  5. 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理

    2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...

  6. NowCoder猜想(素数筛法+位压缩)

    在期末被各科的大作业碾压快要窒息之际,百忙之中抽空上牛客网逛了逛,无意中发现一道好题,NowCoder猜想,题意很明显,就是个简单的素数筛法,但竟然超内存了,我晕(+﹏+)~  明明有 3 万多 k ...

  7. [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】

    拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...

  8. Light oj 1214-Large Division (同余定理)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1214 题意很好懂,同余定理的运用,要是A数被B数整除,那么A%B等于0.而A很大,那我 ...

  9. 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. matlab输入输出语句(input、disp、fprintf)

    输入语句 输入数值 ?x=input('please input a number:') please input a number:22 x = 22 输入字符串 ?x=input('please ...

  2. js中的深拷贝与浅拷贝

    对象的深拷贝于浅拷贝 对于基本类型,浅拷贝过程就是对值的复制,这个过程会开辟出一个新的内存空间,将值复制到新的内存空间.而对于引用类型来书,浅拷贝过程就是对指针的复制,这个过程并没有开辟新的堆内存空间 ...

  3. docker之NGINX镜像构建

    Nginx是一个高性能的Web和反向代理服务器,它具有很多非常优越的特性:1.作为Web服务器.2.作为负载均衡服务器.3.作为邮件代理服务器.4.安装及配置简单.接下来我们介绍在docker构建ng ...

  4. AppScan 扫描测试策略

    使用 AppScan 进行扫描 针对大型网站的扫描,我们按照戴明环 PDCA 的方法论来进行规划和讨论,建议 AppScan 使用步骤:计划(Plan).执行(Do).检查(check).分析(Ana ...

  5. Oracle中 in、exists、not in,not exists的比较

    最基本的区别: in 对主表使用索引 exists 对子表使用索引 not in 不使用索引 not exists 对主子表都使用索引 写法: exist的where条件是: "...... ...

  6. JMS基础篇(二)

    简介 异构集成是消息发挥作用的一个领域,大型公司内部可能会遇到很多的平台,Java,.net或者公司自己的平台等. 传送消息还应该支持异步机制,以提高系统整体的性能.异步传输一条消息意味着,发送者不必 ...

  7. UOJ #207. 共价大爷游长沙 [lct 异或]

    #207. 共价大爷游长沙 题意:一棵树,支持加边删边,加入点对,删除点对,询问所有点对是否经过一条边 一开始一直想在边权上做文章,或者从连通分量角度考虑,比较接近正解了,但是没想到给点对分配权值所以 ...

  8. 夏令营提高班上午上机测试 Day 2 解题报告

    那一天,日照一中夏令营数据结构提高班的同学们终于想起了,被Day2上午的三道题支配的恐惧……   是的..这一天的题有点难想.. 本来打算前天写这篇随笔,然而前天在机房和同学打luogu月赛…… 昨天 ...

  9. xftp上传失败之解决办法

    修改/usr/local 文件夹权限 rwx 为不可读不可写第三方不可访问 报错 传输状态 恢复文件夹/usr/local 读写第三方访问权限 成功上传

  10. Selenium_chromedriver与chrome版本映射表(更新至v2)

    chromedriver.exe下载地址:http://chromedriver.storage.googleapis.com/index.html chromedriver版本 支持的Chrome版 ...