【NOIP2014】解方程(枚举)
题面
题目描述
已知多项式方程:
a0+a1x+a2x2+..+anxn=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入格式
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入样例#1:
2 10
1
-2
1
输出样例#1:
1
1
输入样例#2:
2 10
2
-3
1
输出样例#2:
2
1
2
输入样例#3:
2 10
1
3
2
输出样例#3:
0
说明
对于30%的数据:0<n<=2,|ai|<=100,an!=0,m<100
对于50%的数据:0<n<=100,|ai|<=10^100,an!=0,m<100
对于70%的数据:0<n<=100,|ai|<=10^10000,an!=0,m<10000
对于100%的数据:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
题解
明显对左右两侧取膜呀。。。。
如果f(x)%p=0
那么,肯定有f(x+kp)%p=0
所以,找几个质数,依次计算f(1~p)的值
如果某个整数是解
那么,必定有 f(x%pi)%pi=0
所以枚举一下就可以了。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MOD (19260817)
#define ll long long
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=((x<<1)+(x<<3))%MOD+ch-48;ch=getchar();}
return x*t%MOD;
}
int N,M,a[3][110];
int A[110];
int tot;
char s[200][12000];
bool vis[1100000][5];
int pr[3]={10007,30071,12007};
inline bool f(int x,int tt)
{
ll ans=0;
for(int i=N;i>=0;--i)
ans=((ans+a[tt][i])*x)%pr[tt];
return !ans;
}
inline void geta(int tt)
{
for(int i=0;i<=N;++i)
{
int pos=0,z=1,l=strlen(s[i]);
if(s[i][pos]=='-'){z-=2;pos+=1;}
for(int j=pos;j<l;++j)
a[tt][i]=(a[tt][i]*10+s[i][j]-48)%pr[tt];
a[tt][i]*=z;
}
}
int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)scanf("%s",s[i]);
for(int i=0;i<3;++i)geta(i);
for(int tt=0;tt<3;++tt)
for(int i=1;i<=min(M,pr[tt]);++i)
if(f(i,tt))
vis[i][tt]=true;
for(int i=1;i<=M;++i)
{
bool fl=true;
for(int tt=0;tt<3;++tt)fl&=vis[i%pr[tt]][tt];
if(fl)A[++tot]=i;
}
printf("%d\n",tot);
for(int i=1;i<=tot;++i)
printf("%d\n",A[i]);
return 0;
}
【NOIP2014】解方程(枚举)的更多相关文章
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- NOIP2014解方程
题目:求一个n次整系数方程在1-m内的整数解 n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...
- bzoj 3751: [NOIP2014]解方程
Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- 【bzoj3751】[NOIP2014]解方程 数论
题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...
随机推荐
- CometD的消息推送
CometD 框架 CometD 框架是基于 HTTP 的事件驱动通信解决方案.CometD 框架提供了一个 Java 服务器部件和一个 Java 客户端部件,还有一个基于 jQuery 和 Dojo ...
- UITableView 的使用小点
1.系统默认的颜色设置//无色 cell.selectionStyle = UITableViewCellSelectionStyleNone; //蓝色 cell.selectionStyle = ...
- centos出现“FirewallD is not running”怎么办
最近在阿里云服务器centos上安装了mysql数据库,默认是不开启远端访问功能,需要设置一下防火墙,在开放默认端口号 3306时提示FirewallD is not running,经过排查发现是防 ...
- PHPUnit-附录 C. XML 配置文件
[http://www.phpunit.cn/manual/5.7/zh_cn/appendixes.configuration.html] PHPUnit <phpunit> 元素的属性 ...
- 案例分析——BAT业务https化经历
一.前言 通常的http访问会遭到中间人攻击.网络嗅探等普通用户感知不到的恶意行为,这些行为会篡改用户浏览页面引导用户访问非法网站.抓取用户的上网行为以及个人信息.严重的会造成用户 ...
- Java经典编程题50道之四十四
求0~7所能组成的奇数个数.分析:组成1位数是4个,组成2位数是7*4个,组成3位数是7*8*4个,组成4位数是7*8*8*4个…… public class Example44 { publi ...
- 批处理文件:windows下关闭指定端口
@echo offsetlocal enabledelayedexpansionset /p port=please input port number:for /f "tokens=1-5 ...
- 以kaggle-titanic数据为基础的完整的机器学习
1. 引入所有需要的包 # -*- coding:utf-8 -*- # 忽略警告 import warnings warnings.filterwarnings('ignore') # 引入数据处理 ...
- js使用defineProperty的一些坑
var p2={ }; Object.defineProperty(p2,"gs",{ get:function () { return this.gs; }, set:funct ...
- java 中对对象的调用
java程序设计语言对对象采用的不是引用的调用,实际上对象引用进行的是值得传递.(from:核心卷1 page:123)