如何提高缓存命中率(Redis)
缓存命中率的介绍
命中:可以直接通过缓存获取到需要的数据。
不命中:无法直接通过缓存获取到想要的数据,需要再次查询数据库或者执行其它的操作。原因可能是由于缓存中根本不存在,或者缓存已经过期。
通常来讲,缓存的命中率越高则表示使用缓存的收益越高,应用的性能越好(响应时间越短、吞吐量越高),抗并发的能力越强。
由此可见,在高并发的互联网系统中,缓存的命中率是至关重要的指标。
如何监控缓存的命中率
redis提供了INFO这个命令,能够随时监控服务器的状态,只用telnet到对应服务器的端口,执行命令即可:
- telnet localhost 6379
- info
在输出的信息里面有这几项和缓存的状态比较有关系:
- keyspace_hits:14414110
- keyspace_misses:3228654
- used_memory:433264648
- expired_keys:1333536
- evicted_keys:1547380
通过计算hits和miss,我们可以得到缓存的命中率:14414110 / (14414110 + 3228654) = 81% ,一个缓存失效机制,和过期时间设计良好的系统,命中率可以做到95%以上
有个ruby gem叫redis-stat,它利用INFO命令展现出更直观的信息报表,推荐:
https://github.com/junegunn/redis-stat
同时,zabbix也提供了相关的插件对redis服务进行监控。
影响缓存命中率的几个因素
之前的章节中我们提到了缓存命中率的重要性,下面分析下影响缓存命中率的几个因素。
1.业务场景和业务需求
缓存适合“读多写少”的业务场景,反之,使用缓存的意义其实并不大,命中率会很低。
业务需求决定了对时效性的要求,直接影响到缓存的过期时间和更新策略。时效性要求越低,就越适合缓存。在相同key和相同请求数的情况下,缓存时间越长,命中率会越高。
互联网应用的大多数业务场景下都是很适合使用缓存的。
2.缓存的设计(粒度和策略)
通常情况下,缓存的粒度越小,命中率会越高。举个实际的例子说明:
当缓存单个对象的时候(例如:单个用户信息),只有当该对象对应的数据发生变化时,我们才需要更新缓存或者让移除缓存。而当缓存一个集合的时候(例如:所有用户数据),其中任何一个对象对应的数据发生变化时,都需要更新或移除缓存。
还有另一种情况,假设其他地方也需要获取该对象对应的数据时(比如其他地方也需要获取单个用户信息),如果缓存的是单个对象,则可以直接命中缓存,反之,则无法直接命中。这样更加灵活,缓存命中率会更高。
此外,缓存的更新/过期策略也直接影响到缓存的命中率。当数据发生变化时,直接更新缓存的值会比移除缓存(或者让缓存过期)的命中率更高,当然,系统复杂度也会更高。
3.缓存容量和基础设施
缓存的容量有限,则容易引起缓存失效和被淘汰(目前多数的缓存框架或中间件都采用了LRU算法)。同时,缓存的技术选型也是至关重要的,比如采用应用内置的本地缓存就比较容易出现单机瓶颈,而采用分布式缓存则毕竟容易扩展。所以需要做好系统容量规划,并考虑是否可扩展。此外,不同的缓存框架或中间件,其效率和稳定性也是存在差异的。
4.其他因素
当缓存节点发生故障时,需要避免缓存失效并最大程度降低影响,这种特殊情况也是架构师需要考虑的。业内比较典型的做法就是通过一致性Hash算法,或者通过节点冗余的方式。
有些朋友可能会有这样的理解误区:既然业务需求对数据时效性要求很高,而缓存时间又会影响到缓存命中率,那么系统就别使用缓存了。其实这忽略了一个重要因素--并发。通常来讲,在相同缓存时间和key的情况下,并发越高,缓存的收益会越高,即便缓存时间很短。
提高缓存命中率的方法
从架构师的角度,需要应用尽可能的通过缓存直接获取数据,并避免缓存失效。这也是比较考验架构师能力的,需要在业务需求,缓存粒度,缓存策略,技术选型等各个方面去通盘考虑并做权衡。尽可能的聚焦在高频访问且时效性要求不高的热点业务上(如字典数据、session、token),通过缓存预加载(预热)、增加存储容量、调整缓存粒度、更新缓存等手段来提高命中率。
对于时效性很高(或缓存空间有限),内容跨度很大(或访问很随机),并且访问量不高的应用来说缓存命中率可能长期很低,可能预热后的缓存还没来得被访问就已经过期了。
如何提高缓存命中率(Redis)的更多相关文章
- 关于如何提高缓存命中率(redis)
一.缓存命中率的介绍 命中:可以直接通过缓存获取到需要的数据. 不命中:无法直接通过缓存获取到想要的数据,需要再次查询数据库或者执行其它的操作.原因可能是由于缓存中根本不存在,或者缓存已经过期. 通常 ...
- [MySQL性能优化系列]提高缓存命中率
1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据 ...
- 合理配置MySQL缓存 提高缓存命中率
众所周知,系统读取数据时,从内存中读取要比从硬盘上速度要快好几百倍.故现在绝大部分应用系统,都会最大程度的使用缓存(内存中的一个存储区域),来提高系统的运行效率.MySQL数据库也不例外.在这里,笔者 ...
- MySQL缓存命中率概述及如何提高缓存命中率
MySQL缓存命中率概述 工作原理: 查询缓存的工作原理,基本上可以概括为: 缓存SELECT操作或预处理查询(注释:5.1.17开始支持)的结果集和SQL语句: 新的SELECT语句或预处理查询语句 ...
- Memcache 提高缓存命中率
最近手上某个项目跟新代码,新的代码里大量采用memcahce作为缓存.所以开始深入了解memcache的内存分配策略.以前就听说有个PHP写的memcache监控脚本,在网上搜索了一下,果断下载下来用 ...
- Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%。再往后,每提高0.1%,优化难度成指数级增长了。哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额。 在高并发场景下,提供了保证线程安全的对象、方法。比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好。线程安全的StringBuilder取代S
Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机 ...
- 基于Spring Cache实现二级缓存(Caffeine+Redis)
一.聊聊什么是硬编码使用缓存? 在学习Spring Cache之前,笔者经常会硬编码的方式使用缓存. 我们来举个实际中的例子,为了提升用户信息的查询效率,我们对用户信息使用了缓存,示例代码如下: @A ...
- 再谈缓存和Redis
自从上次分享<Redis到底该如何利用?>已经有1年多了,这1年经历了不少.从码了我们网站的第一行开始到现在,我们的缓存模块也不断在升级,这之中确实略有心得,最近也有朋友探讨缓存,觉得可以 ...
- 谈缓存和Redis
自从上次分享<Redis到底该如何利用?>已经有1年多了,这1年经历了不少.从码了我们网站的第一行开始到现在,我们的缓存模块也不断在升级,这之中确实略有心得,最近也有朋友探讨缓存,觉得可以 ...
随机推荐
- linux上 java 使用 javasqlite
linux上 java 使用 javasqlite http://www.ch-werner.de/javasqlite/ 1) 下载: http://www.ch-werner.de/javasql ...
- linux下挂载U盘
转:http://www.cnblogs.com/yeahgis/archive/2012/04/05/2432779.html linux下挂载U盘 一.Linux挂载U盘: 1.插入u盘到计算机, ...
- UnityEditor下文件操作方法汇总(Unity3D开发之二十四)
猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/50595585 ...
- centos 7下安装python 3.6笔记
每次在centos上安装python 3都需要重新查资料,这次索性自己记下笔记. 首先安装gcc yum -y install gccyum install zlib-devel./configure ...
- python 网络框架twisted基础学习及详细讲解
twisted网络框架的三个基础模块:Protocol, ProtocolFactory, Transport.这三个模块是构成twisted服务器端与客户端程序的基本.Protocol:Protoc ...
- 简单了解JS中的几种遍历
忙了好一段时间,项目上线后终于有那么一点点空档期静下来整理一些问题了.当我们在开发项目的时候,用到遍历的地方肯定少不了,那么我们有那么多的遍历方法,在不同情况下用那种方法会更优雅而且还没bug呢? 首 ...
- 深入了解Collections
在 Java集合类框架里有两个类叫做Collections(注意,不是Collection!)和Arrays,这是JCF里面功能强大的工具,但初学者往往会忽视.按JCF文档的说法,这两个类提供了封装器 ...
- Storm 提交多个流例程
1.拓扑(Topology): builder.setBolt(TRANSFORM_BOLT, new TransformationBolt(), 1).shuffleGrouping(MY_SPOU ...
- Java学习不走弯路教程(7.Eclipse环境搭建)
7.Eclipse环境搭建 在前几章,我们熟悉了DOS环境下编译和运行Java程序,对于大规模的程序编写,开发工具是必不可少的.Java的开发工具比较常用的是Eclipse.在接下来的教程中,我们将基 ...
- Django之AppConfig源码学习
class AppConfig(object) 这个基类描述了一个Django应用以及它的配置信息. 属性: name:django应用的完整python路径,eg.'django.contrib.a ...