若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点。
如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大,小得越来越多。
当断点为k时,记最大可能的成长函数mH(N)为bound函数,记为B(N,k)。------只和N、k有关。
注意比较,发现bound函数比起成长函数消除了H。
如果无断点,自然没有B(N,k)什么事;
如果断点为k,
那么mH(N)是给定H下,可能的最大假设类数;
B(N,k)是不限H下,可能的最大假设类数。
B(N,k)=maxH mH(N),只和样本数N和断点k有关。
注意:这里的H要求有相同的k。
通过数学归纳法可证得:B(N,k)实际被Nk-1所框住,既然成长函数的上限被N的多项式给框住,易得,如果断点存在的话,成长函数也是多项式型的。
------证明了上一节的猜想。
再看保证Ein和Eout的不等式,
证明,
1.用和训练集同样大小的测试集上的表现替代整体输入空间上的表现,认为使得训练集内和整体表现差异过大的坏数据也会使得训练集和测试集上的表现差异过大;
这里做了2件事:
一是用有限的训练集+有限的测试集替代了无限的输入空间,将无限的X变为数量为2N的有限数据集;
二是用完美划分该有限数据集的模式f'代替了完美划分整个输入空间的模式f。------进行了松弛,因为f'的数量多于f。
2.用有限类数mH(2N)替代无限|H|;
3.使用不放回的霍夫丁不等式。
对应于在取小球实验里不放回地抽取,取出的橘色小球频率和罐子里剩余的橘色小球概率依旧概率近似相等。------因为 the inequalities also hold when the Xi have been obtained using sampling without replacement; in this case the random variables are not independent anymore.(来自维基百科)
得到VC bound。
所以,
2维感知器算法在训练集D上学习到的g泛化到整个输入空间X上是概率近似可行的。
那3维及以上感知器算法呢?

机器学习基石:06 Theory of Generalization的更多相关文章

  1. 机器学习基石笔记:06 Theory of Generalization

    若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...

  2. 06 Theory of Generalization

    若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...

  3. 机器学习基石 5 Training versus Testing

    机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f ...

  4. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

  5. 机器学习基石 3 Types of Learning

    机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label L ...

  6. 机器学习基石 2 Learning to Answer Yes/No

    机器学习基石 2 Learning to Answer Yes/No Perceptron Hypothesis Set 对于一个线性可分的二分类问题,我们可以采用感知器 (Perceptron)这种 ...

  7. 机器学习基石 1 The Learning Problem

    机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...

  8. 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

    大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解 ...

  9. ML笔记_机器学习基石01

    1  定义 机器学习 (Machine Learning):improving some performance measure with experience computed from data ...

随机推荐

  1. oracle的卸载

    1.停止所有与ORACLE相关的服务. 2. 使用OUI(Oracle Universal Installer)卸载Oracle软件. "开始"->"程序" ...

  2. u3d材质Tiling和Offset意义以及TRANSFORM_TEX

    1. TRANSFORM_TEX主要作用是拿顶点的uv去和材质球的tiling和offset作运算, 确保材质球里的缩放和偏移设置是正确的 下面这两个函数是等价的.o.uv =   TRANSFORM ...

  3. ZJOI2018游记

    我是一只普及组的菜鸡,我很菜 我参加 \(ZJOI\) 只是来试试水(水好深啊~),看看大佬(差距好大啊~),以后要好好学习 \(day0\) 下午2:00,颁奖 还以为要到很晚,还是挺快的 \(da ...

  4. sqlplus 的安装和配置

    sqlplus :  oracle公司提供用户操作oracle数据库的工具. 安装所需的包:  1.oracle 客户端    2.sqlplus工具 官方下载地址  http://www.oracl ...

  5. @Cacheable的实现原理

    如果你用过Spring Cache,你一定对这种配置和代码不陌生: <cache:annotation-driven cache-manager="cacheManager" ...

  6. css代码整理

    width:(宽度) height:(高度) border:1px solid red:(边框 :边框粗细 显示 颜色) border-radius:10deg:(边框变圆角) box-shadow: ...

  7. Beta Scrum Day 4

    听说

  8. HDFS架构

  9. 雷云Razer Synapse2.0使用测评 -第二次作业

    雷蛇云驱动Razer Synapse2.0使用测评 雷蛇(Razer)是全球顶级游戏设备品牌之一,1998年由CEO Min-Liang Tan和Robert "Razerguy" ...

  10. Tornado websocket应用

    应用场景 WebSocket 的特点如下 适合服务器主动推送的场景(好友上线,即时聊天信息,火灾警告,股票涨停等) 相对于Ajax和Long poll等轮询技术,它更高效,不耗费网络带宽和计算资源 它 ...