Description

题库链接

一只猫和一只老鼠在一张 \(n\) 个节点和 \(m\) 条边的无向图上,初始位置不同。对于每一时刻,猫会先走,它走的方向为靠近老鼠的方向;若多个节点可选,则选字典序最小的那个。同时若走出这步后没有抓到老鼠,则可按同样方式再走一步;接着老鼠会等概率的停在原地或者随机走向一个相邻的节点。问抓到老鼠的期望时间。

\(1\leq n,m\leq 1000\)

Solution

首先注意到这样一句话“若走出这步后没有抓到老鼠,则可按同样方式再走一步”,显然是能够保证猫一定能抓到老鼠。并且猫和老鼠两个所处位置的状态是具有层次性的。

容易发现老鼠的移动是没有规律的,即是随机的。而猫的动作是有规律的。

我们可以事先预处理出一个 \(pre_{u,v}\) 数组,表示猫在 \(u\) 处,老鼠在 \(v\) 处时,猫下一个选择要走的节点是哪一个,可以用 \(n\) 次 \(SPFA\) 预处理出来,由于边数和点数是同阶的,复杂度可以得到保障。

我们可以设出一个 \(dp\) 数组 \(f_{u,v}\) 表示猫在 \(u\) 处,老鼠在 \(v\) 处时期望走的时间为 \(f_{u,v}\) 。

首先显然当 \(u=v\) 时, \(f_{u,v}=0\) ;其次若 \(pre_{u,v}=v\) 即走出一步抓到老鼠或者 \(pre_{pre_{u,v},v}=v\) 即走出两步抓到老鼠, \(f_{u,v}=1\) 。

这时剩下的情况就是老鼠会移动。

由于猫会先走,猫移动之后老鼠再走;显然猫移动结束后停在的位置为 \(pre_{pre_{u,v},v}\) 。

设节点 \(v\) 以及和 \(v\) 相邻的节点的集合为 \(\mathbb{V}\) ,节点 \(v\) 的度数为 \(degree_v\) 。显然答案就是 \[f_{u,v}=\frac{\sum\limits_{x\in\mathbb{V}}f_{pre_{pre_{u,v},v},x}}{degree_v+1}+1\]

记忆化搜索实现。

Code

//It is made by Awson on 2018.2.24
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, m, s, t, u, v;
struct tt {int to, next; }edge[(N<<1)+5];
int path[N+5], top, degree[N+5];
int pre[N+5][N+5]; double f[N+5][N+5];
queue<int>Q;
int vis[N+5], dist[N+5]; void add(int u, int v) {edge[++top].to = v, edge[top].next = path[u], path[u] = top, ++degree[u]; }
void get_pre(int x) {
memset(dist, 127/3, sizeof(dist)); dist[x] = 0, vis[x] = 1; Q.push(x);
while (!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = 0;
for (int i = path[u]; i; i = edge[i].next)
if (dist[edge[i].to] > dist[u]+1) {
dist[edge[i].to] = dist[u]+1;
if (!vis[edge[i].to]) vis[edge[i].to] = 1, Q.push(edge[i].to);
if (u == x) pre[x][edge[i].to] = edge[i].to; else pre[x][edge[i].to] = pre[x][u];
}else if (dist[edge[i].to] == dist[u]+1 && pre[x][edge[i].to] > pre[x][u]) pre[x][edge[i].to] = pre[x][u];
}
}
double dp(int s, int t) {
if (s == t) return 0;
int nex = pre[pre[s][t]][t];
if (pre[s][t] == t || nex == t) return f[s][t] = 1;
if (f[s][t] != 0) return f[s][t];
double k = 1/(1.0*(degree[t]+1)); f[s][t] = 1+dp(nex, t)*k;
for (int i = path[t]; i; i = edge[i].next) f[s][t] += k*dp(nex, edge[i].to);
return f[s][t];
}
void work() {
read(n), read(m); read(s); read(t);
for (int i = 1; i <= m; i++) read(u), read(v), add(u, v), add(v, u);
for (int i = 1; i <= n; i++) get_pre(i);
printf("%.3lf\n", dp(s, t));
}
int main() {
work(); return 0;
}

[NOI 2005]聪聪和可可的更多相关文章

  1. 洛谷 P4206 [NOI2005]聪聪与可可 题解

    题面 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每 ...

  2. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  3. BZOJ 1415 【NOI2005】 聪聪和可可

    题目链接:聪聪和可可 一道水题--开始还看错题了,以为边带权--强行\(O(n^3)\)预处理-- 首先,我们显然可以预处理出一个数组\(p[u][v]\)表示可可在点\(u\),聪聪在点\(v\)的 ...

  4. 【bzoj1415】 Noi2005—聪聪和可可

    http://www.lydsy.com/JudgeOnline/problem.php?id=1415 (题目链接) 题意 一张图,聪聪想吃可可.每单位时间聪聪可以先移动两次:可可后移动一次或停在原 ...

  5. bzoj1415[NOI2005]聪聪和可可

    之前做的一些图上的期望步数的题大多用到高斯消元来求解(HNOI游走,SDOI走迷宫,etc),因此我一开始做这道题的时候想偏了- 这道题的性质:聪聪和可可之间的最短路长度严格递减.因为聪聪总可以多走一 ...

  6. 【BZOJ1415】 [Noi2005]聪聪和可可 概率与期望

    其实题不难,不知提交了几次...不能代码MD...注意一些基本问题...SB概率题 #include <iostream> #include <cstdio> #include ...

  7. NOI2005 聪聪和可可

    Sol 记忆化搜索. \(f[u][v]\) 表示聪聪在 \(u\) ,可可在 \(v\) ,聪聪抓到可可的期望. 预处理出 \(u\) 到 \(v\) 最短路径编号最小的点,记为 \(g[u][v] ...

  8. BZOJ 2152: 聪聪可可 树分治

    2152: 聪聪可可 Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...

  9. bzoj 2152聪聪可可

    2152: 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MB Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰 ...

  10. HYSBZ - 2152 聪聪和可可

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

随机推荐

  1. Java基础学习笔记六 Java基础语法之类和ArrayList

    引用数据类型 引用数据类型分类,提到引用数据类型(类),其实我们对它并不陌生,如使用过的Scanner类.Random类.我们可以把类的类型为两种: 第一种,Java为我们提供好的类,如Scanner ...

  2. uboot中的命令体系

    一.uboot的命令体系介绍以及实例分析: U-Boot 的命令实现大多在 common 目录下.在该目录下命令的代码文件都是以“ cmd_”开头的,如下图所示: 其中每一个文件都是一个命令实现的代码 ...

  3. Python实现网站模拟登陆

    一.实验简介 1.1 基本介绍 本实验中我们将通过分析登陆流程并使用 Python 实现模拟登陆到一个实验提供的网站,在实验过程中将学习并实践 Python 的网络编程,Python 实现模拟登陆的方 ...

  4. nyoj 黑色帽子

    黑色帽子 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述         最近发现了一个搞笑的游戏,不过目前还没玩过.一个舞会上,每个人头上都戴着一顶帽子,帽子只有黑 ...

  5. Python内置函数(19)——oct

    英文文档: oct(x) Convert an integer number to an octal string. The result is a valid Python expression. ...

  6. python-map的用法

    map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 1.当seq只 ...

  7. istio入门(00)istio的学习资源

    官网:https://istio.io/ 理论知识: http://www.uml.org.cn/wfw/201710131.asp 环境搭建: http://dockone.io/article/2 ...

  8. api-gateway实践(01)服务网关 - 原型功能

    一.服务注册 1.增加组:LsqGrpA 2.增加版本:LsqVerA 3.增加api:LsqApiA 3.1.基本信息 3.2.前端定义 3.3.后端定义 二.服务上线和服务授权 1.服务上线 2. ...

  9. windows计划任务

    前段时间写了一个小工具,实现两个数据库的数据同步. 需求:要求每天的某个时间自动同步数据 功能写好之后,发现了windows一个自带的功能不错,可以实现我的需要,不用写定时器触发了 控制面板-> ...

  10. MYSQL之库操作

    一.系统数据库 information_schema :虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等 mysql:核心数据库,里面包含用户.权限. ...