(七) Keras 绘制网络结构和cpu,gpu切换
视频学习来源
https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553
笔记
首先安装pydot
conda install pydot
会自动安装graphviz
如果出现TypeError: softmax() got an unexpected keyword argument 'axis' 错误,可降级keras或者用本文代码标黄的部分解决
切换cpu和gpu运算
https://www.cnblogs.com/jins-note/p/9756050.html
conda安装keras-gpu (conda会自动查询依赖安装需要的相关包,如TensorFlow)
(如果环境出现问题,用conda移除相关包,重新安装keras-gpu即可)
在导入keras前,插入代码
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# The GPU id to use, usually either "0" or "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #使用gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" #为使用CPU
import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
#Convolution2D 是2维卷积
#MaxPooling2D 是2维最大池化
#Flatten 数据扁平化(降维)
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten #在这里导入dropout
from keras.optimizers import Adam
from keras.utils.vis_utils import plot_model
import matplotlib.pyplot as plt
import tensorflow as tf
#需要安装pydot和graphviz
#graphviz需要在官网安装,安装后需要添加环境变量,程序所在目录的bin文件夹加入系统变量
#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape) #转化为4维
#最后一个维度图片深度,1表示黑白,3表示彩色
#rgb是红绿蓝三通道0-255表示各个通道的颜色深度
#(60000,28,28)->(60000,28,28,1)
#-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(-1,28,28,1)/255.0 #转换数据格式
x_test=x_test.reshape(-1,28,28,1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #定义序列模型
model=Sequential() #第一个卷积层
#input_shape 输入平面
#filters 卷积核/滤波器个数
#kernel_size 卷积窗口大小
#strides 步长
#padding padding方式 same/valid
#activation 激活函数
model.add(Convolution2D(
input_shape=(28,28,1),#只需要在第一次添加输入平面
filters=32,
kernel_size=5,
strides=1,
padding='same',
activation='relu'
)) #平面大小28x28,用same padding得到的和上一次一样,也是28x28,有32个特征图
#池化后变成14x14,32个特征图 #第一个池化层
model.add(MaxPooling2D(
pool_size=2, # 池化窗口大小 2x2的窗口
strides=2,
padding='same'
)) #第二个卷积层
#filters=64 kernel_seize=5
model.add(Convolution2D(64,5,strides=1,padding='same',activation='relu')) #第二个卷积层后64个特征图,14x14
#第二个池化层后64个特征图,7x7 #第二个池化层
model.add(MaxPooling2D(2,2,'same')) #把第二个池化层的输出扁平化为1维
#长度 64x7x7
model.add(Flatten()) #第一个全连接层
#1024个神经元
model.add(Dense(1024,activation='relu')) #Dropout
#训练时百分之40个神经元不工作
model.add(Dropout(0.4)) #第二个全连接层
model.add(Dense(10,activation=(tf.nn.softmax))) ##定义优化器
##学习速率为10的负4次方
#adam=Adam(lr=1e-4)
#
#
##定义优化器,损失函数,训练效果中计算准确率
#model.compile(
# optimizer=adam, #sgd优化器
# loss='categorical_crossentropy', #损失用交叉熵,速度会更快
# metrics=['accuracy'], #计算准确率
#)
#
##训练
##六万张,每次训练64张,训练10个周期(六万张全部训练完算一个周期)
#model.fit(x_train,y_train,batch_size=64,epochs=10)
#
##评估模型
#loss,accuracy=model.evaluate(x_test,y_test)
#
#print('\ntest loss',loss)
#print('\ntest accuracy',accuracy)
#
#loss,accuracy=model.evaluate(x_train,y_train)
#
#print('\ntrain loss',loss)
#print('\ntrain accuracy',accuracy)
#TB代表从上往下,LR表示从左往右
plot_model(model,to_file='model.png',show_shapes=True,show_layer_names='False',rankdir='TB')
plt.figure(figsize=(20,20))
img=plt.imread('model.png')
plt.imshow(img)
plt.axis('off')
plt.show()
(七) Keras 绘制网络结构和cpu,gpu切换的更多相关文章
- Cpu Gpu 内存 显存 数据流
[精]从CPU架构和技术的演变看GPU未来发展 http://www.pcpop.com/doc/0/521/521832_all.shtml 显存与纹理内存详解 http://blog.csdn.n ...
- Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度
Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度 硬件平台: Raspberry Pi B+ 软件平台: Raspberry 系统与前期安装请参见:树莓派(Ros ...
- 舌尖上的硬件:CPU/GPU芯片制造解析(高清)(组图)
一沙一世界,一树一菩提,我们这个世界的深邃全部蕴藏于一个个普通的平凡当中.小小的厨房所容纳的不仅仅是人们对味道的情感,更有推动整个世界前进的动力.要想理解我们的世界,有的时候只需要细细品味一下我们所喜 ...
- [转帖]双剑合璧:CPU+GPU异构计算完全解析
引用自:http://tech.sina.com.cn/mobile/n/2011-06-20/18371792199.shtml 这篇文章写的深入浅出,把异构计算的思想和行业趋势描述的非常清楚,难得 ...
- cpu gpu数据同步
https://developer.apple.com/documentation/metal/advanced_command_setup/cpu_and_gpu_synchronization d ...
- CPU/GPU/TPU/NPU...XPU都是什么意思?
CPU/GPU/TPU/NPU...XPU都是什么意思? 现在这年代,技术日新月异,物联网.人工智能.深度学习等概念遍地开花,各类芯片名词GPU, TPU, NPU,DPU层出不穷......都是什么 ...
- keras & tensorflow 列出可用GPU 和 切换CPU & GPU
列出可用GPU from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) from ...
- CPU GPU设计工作原理《转》
我知道这非常长,可是,我坚持看完了.希望有幸看到这文章并对图形方面有兴趣的朋友,也能坚持看完.一定大有收获.毕竟知道它们究竟是怎么"私下勾搭"的.会有利于我们用程序来指挥它们... ...
- three.js粒子效果(分别基于CPU&GPU实现)
前段时间做了一个基于CPU和GPU对比的粒子效果丢在学习WebGL的群里,技术上没有多作讲解,有同学反馈看不太懂GPU版本,干脆开一篇文章,重点讲解基于GPU开发的版本. 一.概况 废话不多说,先丢上 ...
随机推荐
- 从css 3d说到空间坐标轴
有一次我们说到掷骰子那个游戏,当时是用了一个steps属性+雪碧图来制作帧动画,这当然颇为不错,但其实一开始我想的不是这样的,我想的是用真的3d和动画去做,这个方案涉及到不少空间的知识,今天来给大伙好 ...
- 结合JDK源码看设计模式——装饰者模式
定义 在不改变原有对象的基础之上,将功能附加到对象上 适用场景 扩展一个类的功能 动态的给对象增加功能,当功能不需要的时候能够动态删除 详解 在看到定义的时候,可能很多人会想,这不就是继承吗?的确很像 ...
- SQL Server中是否可以准确获取最后一次索引重建的时间?
在SQL Server中,我们能否找到索引的创建时间?最后一次索引重建(Index Rebuild)的时间? 最后一次索引重组(INDEX REORGANIZE)的时间呢? 答案是我们无法准确的找到 ...
- SQL Server排名或排序的函数
SQL Server获得排名或排序的函数有如下几种: 1.Rank():在结果集中每一条记录所在的排名位置,但排名可能不连续,例如:若同一组内有两个第一名,则该组内下一个名次直接跳至第三名 sel ...
- python3第一天,随便写写
哈哈 我滴第一篇博客,不知道咋写,随意看了看别人的博客,我还是不知道咋写,既然是我的博客,那我就把它当随笔写了(这里就是添加随笔...) 也不知道自己说了啥,不过想到了一句话:日记都是写给别人看的.哈 ...
- WebSocket整合SSM(Spring,Struts2,Maven)
一.WebSocket与HTTP长轮询 WebSocket 属于HTML5 规范的一部分,提供的一种在单个 TCP 连接上进行全双工通讯的协议.允许服务端主动向客户端推送数据.在 WebSocket ...
- 在.NET MVC 中使用Highcharts+Ajax+Json生成动态曲线图,柱状图,饼图
开发背景: 今天在做一个关于商城后台金额报表统计的功能,为了让数据直观明了并且这个报表还需要在手机端自适应所以我决定采用HIghCharts插件下的的报表,大家也可以去了解一下免费开源主要是好看. 首 ...
- 中国IT史上两大严重事故对我们的警醒及预防措施
20190121 一,历史回顾:20150528携程运维大事故 2015年5月28日上午11点开始,携程旅行网官方网站突然显示404错误页,App也无法使用,业务彻底中断. 据称是因为乌云网公布了携程 ...
- 在macos上基于python2.7安装PyQt5
在python3上面安装PyQt5是十分简单的,可是,在python2.7上安装这个东西,着实让人折腾了一把.要总结一下,年纪大了,记性不好. 首先要安装最新版的Qt和python2,命令如下: br ...
- PMBook - 上课体会
一.上课感觉怎么样? 这两天都在培训PMP,第一天提前20分到的,空位很多,挑了第二排坐下,看投影效果挺好.第二天我提前30分钟到教室,中间的位置都坐满了,只能找其他位置了.看来大家积极性提高了很多, ...