●洛谷P2606 [ZJOI2010]排列计数
题链:
https://www.luogu.org/problemnew/show/P2606
题解:
组合数(DP),Lucas定理
首先应该容易看出,这个排列其实是一个小顶堆。
然后我们可以考虑dp:
令F[i]为小顶堆的i号节点那棵子树的方案数:
F[i]=F[i*2]*F[i*2+1]*C(size[i]-1,size[i*2])
含义就是左儿子的方案数*右儿子的方案数*当前i节点取走最小的那个值后分size[i*2]个数给左儿子的方案数。
(BZOJ上数据加强,可能会N>P,所以如果直接预处理阶乘和阶乘逆元可能会导致出现很多不该出现的0,所以这里考虑用Lucas定理)
代码:
#include<bits/stdc++.h>
#define MAXN 1000006
using namespace std;
int N,P,ANS=1;
int size[MAXN],fac[MAXN],inv[MAXN];
int fastpow(int a,int b){
int ret=1;
if(a==0) return 1;
for(;b;a=1ll*a*a%P,b>>=1)
if(b&1) ret=1ll*ret*a%P;
return ret;
}
void prepare(int m){
fac[0]=inv[0]=1;
for(int i=1;i<=m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[m]=fastpow(fac[m],P-2);
for(int i=m-1;i>=1;i--) inv[i]=1ll*inv[i+1]*(i+1)%P;
}
int C(int m,int n){
int ret=1,nn,mm;
while(m&&n){
mm=m%P; nn=n%P; m/=P; m/=P;
if(mm<nn) return 0;
ret=1ll*ret*fac[mm]%P*inv[nn]%P*inv[mm-nn]%P;
}
return ret;
}
int main(){
scanf("%d%d",&N,&P);
prepare(min(N,P-1));
for(int i=N;i>=1;i--) size[i]++,size[i/2]+=size[i];
for(int i=1;i<=N;i++) if(i*2<=N)
ANS=1ll*ANS*C(size[i]-1,size[i*2])%P;
printf("%d\n",ANS);
return 0;
}
●洛谷P2606 [ZJOI2010]排列计数的更多相关文章
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- BZOJ1833或洛谷2602 [ZJOI2010]数字计数
BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- 洛谷P4071 [SDOI2016] 排列计数 [组合数学]
题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...
随机推荐
- C语言第二周作业
一.PTA实验作业 题目一:7-1 计算分段函数 1.实验代码 double x,y; scanf("%lf", &x); if(x >= 0){ y=pow(x,0 ...
- 20162320刘先润第三周Bag类测试
前言 以下内容是本周Bag代码的课后作业,要求是完成伪代码.产品代码和测试代码,为了书写方便我将伪代码以注释的形式写在了产品代码的后面 测试步骤 1.首先对Bag类引用BagInterface的代码进 ...
- decltype操作符
关于decltype操作符的说明: 1.在C++中,decltype作为操作符,用于查询表达式的数据类型.decltype在C++11标准制定时引入,主要是为泛型编程而设计,以解决泛型编程中,由于有些 ...
- 通过URL传递PDF名称参数显示PDF
1 <%@ page language="java" import="java.util.*,java.io.*" 2 pageEncoding=&quo ...
- DES加密实现的思想及代码
感谢: http://blog.csdn.net/yxstars/article/details/38424021 上面的日志非常清晰的写出了这个DES加密的过程,主要存在初始IP置换,然后中间存在8 ...
- Struts2 配置文件小结
每次写的博文都被管理员都被移出首页,好气!还希望有哪位大神可以指点迷津-- struts2 配置文件的 result 节点 result 节点是 action 节点的子节点,他代表着 action 方 ...
- api-gateway实践(08)新服务网关 - 云端发布和日志查看
一.发布应用 1.新建应用空间 1.1.新建应用空间 1.2.新建应用 1.3.上传程序包 2.创建应用引擎服务 3.发布应用 3.1.为应用容器绑定Web运行环境(应用引擎服务) 3.2.发布应用( ...
- 前端之HTML内容
一.HTML介绍 1.Web服务本质 当我们在浏览器中输入一个url后打开一个页面这个过程实质是一个网络编程中的sockt服务端接受指令并发送指令的一个过程.本质顺序是: 浏览器发请求——>HT ...
- python 杂货铺
python 杂货铺之不知道的python操作 1.交互模式下的神奇的_ windos中cmd交互模式中下(python2,python3),最近一个表达式的值赋给变量 _.这样我们就可以把它当作一个 ...
- MySQL基础操/下
MySQL基础操 一.自增补充 desc (表名)t1: 查看表格信息内容 表的信息 show create table t1(表名):也是查看信息,还不多是横向查看 show create tabl ...