Fantasia

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1654    Accepted Submission(s): 429

Problem Description
Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex is attached with a weight wi. Let Gi be the graph after deleting the i-th vertex from graph G. Professor Zhang wants to find the weight of G1,G2,...,Gn.

The weight of a graph G is defined as follows:

1. If G is connected, then the weight of G is the product of the weight of each vertex in G.
2. Otherwise, the weight of G is the sum of the weight of all the connected components of G.

A connected component of an undirected graph G is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m (2≤n≤105,1≤m≤2×105) -- the number of vertices and the number of edges.

The second line contains n integers w1,w2,...,wn (1≤wi≤109), denoting the weight of each vertex.

In the next m lines, each contains two integers xi and yi (1≤xi,yi≤n,xi≠yi), denoting an undirected edge.

There are at most 1000 test cases and ∑n,∑m≤1.5×106.

 
Output
For each test case, output an integer S=(∑i=1ni⋅zi) mod (109+7), where zi is the weight of Gi.
 
Sample Input
1
3 2
1 2 3
1 2
2 3
 
Sample Output
20
 
/*
hdu 5739 割点 problem:
给你一个无向图,G[i]为删除i点时,无向图的价值. 求 sum(i*G[i])%mod
如果当前是连通的,那么连通分量的价值为所有点权值的积(任意两个节点连通)
否则为拆分后的各个连通分量的价值的和 solve:
所以需要判断当前点是否是割点.
如果不是割点,只需要减去这个点的权值即可. 如果是割点,要减去这个连通分量的价值再加上拆散后的各个连通分量的值 最开始题意理解错了- -,而且模板有点问题,一直wa. hhh-2016-08-27 19:47:17
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfl(a) scanf("%I64d",&a)
#define key_val ch[ch[root][1]][0]
#define inf 1e9
using namespace std;
const ll mod = 1e9+7;
const int maxn = 100005; struct Edge
{
bool cut ;
int v,next,w;
} edge[maxn*5]; int head[maxn],tot;
int low[maxn],dfn[maxn],Stack[maxn],index,top;
bool Instack[maxn],cut[maxn];
int bridge;
ll val[maxn],mul[maxn],ans[maxn],fans[maxn],tval[maxn];
void add_edge(int u,int v)
{
edge[tot].v = v,edge[tot].next = head[u],head[u] = tot++;
} ll tans =1 ; ll pow_mod(ll a,ll n)
{
ll cnt =1 ;
while(n)
{
if(n & 1) cnt = cnt*a%mod;
a = a*a%mod;
n >>= 1;
}
return cnt ;
}
int now;
vector<int> vec[maxn];
int from[maxn];
void Tarjan(int u,int ance,int pre)
{
int v;
vec[now].push_back(u);
from[u] = now;
low[u] = dfn[u] = ++index;
Stack[top++] = u;
Instack[u] = true;
tans = tans*val[u] % mod;
int son = 0;
for(int i= head[u]; i!= -1; i = edge[i].next)
{
v = edge[i].v;
if(v == pre){
continue;
}
if(!dfn[v])
{
son ++ ;
ll tp = tans;
Tarjan(v,ance,u);
low[u] = min(low[u],low[v]); if(u != pre && low[v] >= dfn[u])
{
cut[u] = true;
ll ta = tans * pow_mod(tp,mod-2)%mod;
// cout <<"node:" << u <<" ta:" <<ta <<endl;
ans[u] = (ans[u] + ta)%mod;
fans[u] = (fans[u] * ta) % mod;
}
}
else if(low[u] > dfn[v])
low[u] = dfn[v];
}
if(u == ance && son > 1)
cut[u] = true;
Instack[u] = false;
top --;
} void init(int n)
{
for(int i = 0; i <= n+1; i++)
{
head[i] = -1;
ans[i] = 0;
fans[i] = 1;
Instack[i]=cut[i]= 0;
dfn[i] = 0;
vec[i].clear();
}
tot=top=index=0;
} int main()
{
// freopen("in.txt","r",stdin);
int T,n,m,u,v; scanfi(T);
while(T--)
{ scanfi(n),scanfi(m);
init(n);
for(int i =1; i <= n; i++)
{
scanfl(val[i]);
fans[i] = 1;
}
for(int i = 0; i < m; i++)
{
scanfi(u),scanfi(v);
add_edge(u,v);
add_edge(v,u);
}
now = 1;
ll ob = 0;
for(int i = 1; i <= n; i++)
{
if(!dfn[i])
{
tans= 1;
Tarjan(i,i,-1);
tval[now] = tans;
ll amul = tans;
ob = (ob+tans) %mod;
// cout << "all:" <<tans<<endl;
for(int j = 0 ; j < vec[now].size(); j ++)
{
int to = vec[now][j]; // cout << to <<" " << fans[to] << endl;
if(to == i) continue;
ans[to] = (ans[to] + amul*pow_mod(fans[to]*val[to]%mod,mod-2)%mod);
if(ans[to] > mod) ans[to] -= mod;
}
now ++;
}
}
ll out = 0;
ll tm;
for(int i = 1; i <= n; i++)
{
// cout << fans[i] <<" " << ans[i] <<" " <<cut[i] << endl;
int tf = from[i];
if(cut[i])
{
tm = (ob - tval[tf] + ans[i] + mod)%mod;
}
else
{
if(vec[from[i]].size() > 1)
tm = (ob - tval[tf] + tval[tf]*pow_mod(val[i],mod-2)%mod + mod) % mod;
else
tm = (ob - tval[tf] + mod) % mod;
}
out = (out + i * tm % mod) % mod;
}
printf("%I64d\n",out);
}
return 0;
} /*
3
4 3
1 2 3 4
1 2
2 3
1 3 4 2
100000000 131231232 312354435 432134234
1 2
3 4 66
315142079 */

  

hdu 5739 割点的更多相关文章

  1. hdu 4587(割点的应用)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 思路:题目的意思很简单,就是删除任意2个节点以及关联的边,求图的最大连通分量数.我们知道删除割点 ...

  2. HDU 5739 Fantasia 双连通分量 树形DP

    题意: 给出一个无向图,每个顶点有一个权值\(w\),一个连通分量的权值为各个顶点的权值的乘积,一个图的权值为所有连通分量权值之和. 设删除顶点\(i\)后的图\(G_i\)的权值为\(z_i\),求 ...

  3. HDU 5739 Fantasia

    可以将这个图转换成森林来进行树形dp求解.看了这篇具体教学才会的:http://www.cnblogs.com/WABoss/p/5696926.html 大致思路:求解一下点双连通分量(Tarjan ...

  4. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  5. HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 TWO NODES Time Limit: 24000/12000 MS (Java/Other ...

  6. hdu 4587 推断孤立点+割点+ 删除点之后,剩下多少连通分量

    做了非常久...... 题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4587 先枚举删除的第一个点,第二个点就是找割点.没有割点当然也有答案 学到 ...

  7. HDU 3844 Mining Your Own Business(割点,经典)

    题意: 给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法. 思路: 要 ...

  8. Destroying the bus stations HDU - 2485(最小割点)

    题意: 就是求最小割点 解析: 正向一遍spfa 反向一遍spfa  然后遍历每一条边,对于当前边 如果dis1[u] + dis2[v] + 1 <= k 那么就把这条边加入到网络流图中, 每 ...

  9. Key Vertex (hdu 3313 SPFA+DFS 求起点到终点路径上的割点)

    Key Vertex Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

随机推荐

  1. C语言博客作业字符数组

    一.PTA实验作业 7-12 IP地址转换 本题PTA提交列表 设计思路 3.代码截图 7-7删除字符串中的子串 本题PTA提交列表 设计思路 定义字符型数组s[81]储存主串,sub[81]储存子串 ...

  2. Python upper()方法

    描述 Python upper() 方法将字符串中的小写字母转为大写字母. 语法 upper()方法语法: str.upper() 参数 NA. 返回值 返回小写字母转为大写字母的字符串. 实例 以下 ...

  3. Python choice() 函数

    Python choice() 函数  Python 数字 描述 choice() 方法返回一个列表,元组或字符串的随机项. 语法 以下是 choice() 方法的语法: import random ...

  4. Twisted UDP编程技术

    实战演练1:普通UDP UDP是一种无连接对等通信协议,没有服务器和客户端概念,通信的任何一方均可通过通信原语直接和其他方通信 1.相对于TCP,UDP编程只需定义DatagramProtocol子类 ...

  5. 搭建vue项目环境

    前言 在开发本项目之前,我对vue,react,angular等框架了解,仅限于知道它们是什么框架,他们的核心是什么,但是并没有实际使用过(angular 1.0版本用过,因为太难用,所以对这类框架都 ...

  6. 前端面试题之html

    1.简述<!DOCTYPE> 的作用,标准模式和兼容模式各有什么区别? <!DOCTYPE> 位于文档的第一行,告知浏览器使用哪种规范. 如果不写DOCTYPE,浏览器会进入混 ...

  7. 部分和问题 nyoj

    部分和问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K.   输入 首先, ...

  8. NYOJ 炫舞家st

    #include <iostream>#include <cstring>#include <algorithm>using namespace std; cons ...

  9. 06-移动端开发教程-fullpage框架

    CSS3的新特性已经讲完了,接下来我们看一下jQuery的一个全屏jQuery全屏滚动插件fullPage.js.我们经常见到一些全屏的特绚丽页面,手指或者鼠标滑动一下就是一整屏切换,而且还有各种效果 ...

  10. python入门:python包管理工具pip的安装

    pip 是一个安装和管理 Python 包的工具 , 是 easy_install 的一个替换品. distribute是setuptools的取代(Setuptools包后期不再维护了),pip是e ...