Description

  铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。

  现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。

  铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果

Solution

用总数减去不连通的就是答案

设 \(f[S]\) 表示 \(S\) 集合中,所有点连通的图的方案.

设 \(g[S]\) 表示 \(S\) 集合中任意连边.

\(f[S]=g[S]-\sum_{S'∈S}f[S']*g[S\)^\(S']\)

玩样例发现,这样做会减多,因为 \(g[S\)^\(S']\) 的方案中也有连通图,所以在连通时\(f[S']\)和\(g[S\)^\(S']\)是对称的,会重复

所以需要强制定一个节点作为代表元,\(S'\)集合必须包含这个点

神奇的是:

按理来说写成这样才对:

  for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&(i&(-i))))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}

写成这样也对了,懵逼.jpg

  for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&1))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
#include<bits/stdc++.h>
using namespace std;
const int N=18,mod=1e9+7;
int f[1<<16],g[1<<16],c[N][N],n;
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&c[i][j]);
int m=(1<<n)-1;
for(int i=0;i<=m;i++){
g[i]=1;
for(int j=1;j<=n;j++)
if(i&(1<<(j-1)))
for(int k=j+1;k<=n;k++)
if((i&(1<<(k-1))))g[i]=1ll*g[i]*(c[j][k]+1)%mod;
}
for(int i=1;i<=m;i++){
for(int S=i&(i-1);S;S=i&(S-1))
if(!((i^S)&1))f[i]=(f[i]+1ll*f[S]*g[i^S])%mod;
f[i]=(g[i]-f[i]+mod)%mod;
}
printf("%d\n",f[m]);
return 0;
}

bzoj 2560: 串珠子的更多相关文章

  1. BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)

    (Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...

  2. ●BZOJ 2560 串珠子

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2560 题解: 容斥,状压计数dp 首先求出一个数组 g[s] 表示集合内的点的连边方案数(两 ...

  3. bzoj 2560: 串珠子【状压dp】

    正难则反,设g[s]为集合s不一定联通的方案数,这个很好求,把边数+1乘起来即可,f[s]为s一定联通的方案数 f考虑容斥,就是g[s]-Σf[nw]*g[s^nw],nw是s的子集,这样就减掉了不联 ...

  4. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

  5. BZOJ 2560(子集DP+容斥原理)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 497[Submit][Status][Discuss] ...

  6. 【BZOJ2560】串珠子 状压DP+容斥

    [BZOJ2560]串珠子 Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个 ...

  7. [tsinsen_A1278]串珠子

    [tsinsen_A1278]串珠子 试题描述 铭铭有 \(n\) 个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数 \(1\) ...

  8. 【BZOJ2560】串珠子(状压DP,容斥原理)

    题意: 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体.现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在 ...

  9. BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)

    标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...

随机推荐

  1. C语言的第 次作业总结

    PTA实验作业 第一题: 使用函数输出水仙花数 1.设计思路: 2.碰到的问题及解决方法: 实验中碰到的主要问题是:虽然知道如何求每一位的数但不知道如何输出m到n之间的水仙花数,我上面截图中的和瓮恺视 ...

  2. 2017-2018-1 Java演绎法 第三周 作业

    团队任务:团队展示与选题 团队展示 队员学号及姓名 学号 姓名 主要负责工作 20162315 马军 日常统计,项目部分代码 20162316 刘诚昊 项目部分代码,代码质量测试 20162317 袁 ...

  3. 项目Alpha冲刺Day9

    一.会议照片 二.项目进展 1.今日安排 侧栏及相关刷新完成,项目结构小变动.个人信息和修改密码后台完成. 2.问题困难 前后台联调出现问题,配置修改了半天还没改好.好像是会话丢失,初步判断应该是后台 ...

  4. 团队作业2:需求分析&原型设计

    Deadline: 2017-11-5  22:00PM,以博客发表日期为准.   评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 需求分析 原型设计 编码规范 晚交 - 0分 迟交两周以 ...

  5. 《Language Implementation Patterns》之 数据聚合符号表

    本章学习一种新的作用域,叫做数据聚合作用域(data aggregate scope),和其他作用域一样包含符号,并在scope tree里面占据一个位置. 区别在于:作用域之外的代码能够通过一种特殊 ...

  6. Python split()方法

    Python split()方法 描述 Python split()通过指定分隔符对字符串进行切片,如果参数num 有指定值,则仅分隔 num 个子字符串 语法 split()方法语法: str.sp ...

  7. vue2.X简单翻页/分页

    由于业务需要 公司把后台所有数据一次性给前端,数据过多,所以前端需要做一些分页的处理,比较简单的翻页. html代码 <table class="three_td"> ...

  8. 第四十六条:for-each循环优先于传统的for循环

    for(Elements e : list) { //doSomeThing-- }

  9. 《高级软件测试》Windows平台Jira的配置

    昨天完成了Jira的下载,很开心地去睡觉等明天天亮秒配环境愉快进行使用,撰写文档,开始徜徉于软件管理测试实践,早日走向代码巅峰. 我们把安装和配置的过程来走一遍. 安装完成汤姆猫长这样子: 安装Jir ...

  10. 韩顺平dedecms讲解上课记录

    感谢韩顺平: 如何打开php的gd库,通过php设置->php扩展-->phpdb库;打上勾就行: dede存在四张十分重要的表,channeltype,模型表最原始的发源arctype: ...