Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

这道题给了我们一个二维数组组成的三角形,让我们寻找一条自上而下的路径,使得路径和最短。那么那道题后还是先考虑下暴力破解,我们可以发现如果要遍历所有的路径的话,那可以是阶乘级的时间复杂度啊,OJ必灭之,趁早断了念想比较好。必须要优化时间复杂度啊,题目中给的例子很容易把人带偏,让人误以为贪婪算法可以解题,因为看题例子中的红色数组,在根数字2的下方选小的数字3,在3的下方选小的数字5,在5的下方选小的数字1,每次只要选下一层相邻的两个数字中较小的一个,似乎就能得到答案了。其实是不对的,贪婪算法可以带到了局部最小,但不能保证每次都带到全局最小,很有可能在其他的分支的底层的数字突然变的超级小,但是贪婪算法已经将其他所有分支剪掉了。所以为了保证我们能得到全局最小,动态规划Dynamic Programming还是不二之选啊。其实这道题和 Dungeon Game 非常的类似,都是用DP来求解的问题。那么其实我们可以不新建dp数组,而是直接复用triangle数组,我们希望一层一层的累加下来,从而使得 triangle[i][j] 是从最顶层到 (i, j) 位置的最小路径和,那么我们如何得到状态转移方程呢?其实也不难,因为每个结点能往下走的只有跟它相邻的两个数字,那么每个位置 (i, j) 也就只能从上层跟它相邻的两个位置过来,也就是 (i-1, j-1) 和 (i-1, j) 这两个位置,那么状态转移方程为:

triangle[i][j] = min(triangle[i - 1][j - 1], triangle[i - 1][j])

我们从第二行开始更新,注意两边的数字直接赋值上一行的边界值,那么最终我们只要在最底层找出值最小的数字,就是全局最小的路径和啦,代码如下:

解法一:

class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for (int i = ; i < triangle.size(); ++i) {
for (int j = ; j < triangle[i].size(); ++j) {
if (j == ) {
triangle[i][j] += triangle[i - ][j];
} else if (j == triangle[i].size() - ) {
triangle[i][j] += triangle[i - ][j - ];
} else {
triangle[i][j] += min(triangle[i - ][j - ], triangle[i - ][j]);
}
}
}
return *min_element(triangle.back().begin(), triangle.back().end());
}
};

这种方法可以通过OJ,但是毕竟修改了原始数组triangle,并不是很理想的方法。在网上搜到一种更好的DP方法,这种方法复制了三角形最后一行,作为用来更新的一位数组。然后逐个遍历这个DP数组,对于每个数字,和它之后的元素比较选择较小的再加上面一行相邻位置的元素做为新的元素,然后一层一层的向上扫描,整个过程和冒泡排序的原理差不多,最后最小的元素都冒到前面,第一个元素即为所求。代码如下:

解法二:

class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> dp(triangle.back());
for (int i = (int)triangle.size() - ; i >= ; --i) {
for (int j = ; j <= i; ++j) {
dp[j] = min(dp[j], dp[j + ]) + triangle[i][j];
}
}
return dp[];
}
};

下面我们来看一个例子,对于输入数组:

-1

2   3

1  -1  -3

5   3   -1   2

下面我们来看DP数组的变换过程(红色数字为每次dp数组中值改变的位置):

DP:5  3  -1  2

DP:  3  -1  2

DP:4  -2  -1  2

DP:4  -2  -4  2

DP:  -2  -4  2

DP:0  -1  -4  2

DP:-2  -1  -4  2

参考资料:

https://leetcode.com/problems/triangle/

https://leetcode.com/problems/triangle/discuss/38730/DP-Solution-for-Triangle

https://leetcode.com/problems/triangle/discuss/38918/C%2B%2B-top-down-and-bottom-up-solutions.

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Triangle 三角形的更多相关文章

  1. LeetCode Triangle 三角形(最短路)

    题意:给一个用序列堆成的三角形,第n层的元素个数为n,从顶往下,每个元素可以选择与自己最近的两个下层元素往下走,类似一棵二叉树,求最短路. [], [,4], [6,,7], [4,,8,3] 注意: ...

  2. [LeetCode 120] - 三角形(Triangle)

    问题 给出一个三角形,找出从顶部至底部的最小路径和.每一步你只能移动到下一行的邻接数字. 例如,给出如下三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 从顶部至底部的最 ...

  3. LeetCode 976. Largest Perimeter Triangle (三角形的最大周长)

    题目标签:Array 题目给了我们一个 边长的 array, 让我们找出 最大边长和的三角形,当然前提得是这三条边能组成三角形.如果array 里得边长组成不了三角形,返回0. 最直接的理解就是,找到 ...

  4. LeetCode 976. 三角形的最大周长(Largest Perimeter Triangle) 33

    976. 三角形的最大周长 976. Largest Perimeter Triangle 题目描述 给定由一些正数(代表长度)组成的数组 A,返回由其中三个长度组成的.面积不为零的三角形的最大周长. ...

  5. LeetCode 120. Triangle三角形最小路径和 (C++)

    题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...

  6. LeetCode 120. 三角形最小路径和(Triangle)

    题目描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  7. LeetCode 120. Triangle (三角形最小路径和)详解

    题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  8. leetcode — triangle

    /** * Source : https://oj.leetcode.com/problems/triangle/ * * * Given a triangle, find the minimum p ...

  9. 120 Triangle 三角形最小路径和

    给出一个三角形(数据数组),找出从上往下的最小路径和.每一步只能移动到下一行中的相邻结点上.比如,给你如下三角形:[     [2],    [3,4],   [6,5,7],  [4,1,8,3]] ...

随机推荐

  1. C语言用分别用递归和循环求数字的阶乘的方法

    以下代码均为 自己 实现,嘻嘻! 参考文章:http://blog.csdn.net/talk_8/article/details/46289683 循环法 int CalFactorial(int ...

  2. c#编程基础之枚举

    枚举的意义就在于限制变量取值范围. 当可以确定的几种取值时才可以用. 如果输入一个字符串需要进行判断是否是我们需要的字符串时,则一般需要这样写: using System; using System. ...

  3. JavaScript移除绑定在元素上的匿名事件处理函数

    前言: 面试的时候有点蒙,结束之后想想自己好像根本就误解了面试官的问题,因为我理解的这个问题本身就没有意义.但是当时已经有一些思路,但是在一个点上被卡住. 结束之后脑子瞬间灵光,想出了当时没有迈出的那 ...

  4. 居然是Firefox没有抛弃我们

    面向企业级市场,一款网页浏览器的很多特性不是说改就改,说丢弃就丢弃.就像微软不能抛弃IE一样,Firefox也有类似的定位和使命. Firefox即尝试提供企业级市场所需的特性稳定的软件版本(LTS) ...

  5. discuz模板语法

    Discuz! X 模板的解析主要是 ./source/class/class_template.php 文件解析处理的,如果需要深入了解请可以看看这个文件! 模板嵌套语法 将被嵌套模板内容解析为 P ...

  6. Python 生成器与迭代器 yield 案例分析

    前几天刚开始看 Python ,后因为项目突然到来,导致Python的学习搁置了几天.然后今天看回Python 发现 Yield 这个忽然想不起是干嘛用的了(所以,好记性不如烂笔头.).然后只能 花点 ...

  7. Entity Framework Code First Migrations--EF 的数据迁移

    1. 为了演示方便,首先新建一个控制台项目,然后添加对entityframework的引用 使用nuget控制台执行: Install-Package EntityFramework 2.新建一个实体 ...

  8. java入门笔记001--java环境搭建

    1. 常见dos命令 •dir : 列出当前目录下的文件以及文件夹 •md : 创建目录 •rd : 删除目录 •cd : 进入指定目录 •cd.. : 退回到上一级目录 •cd\: 退回到根目录 • ...

  9. ssh改https为ssh

    第一:设置Git的user name和email: 第二:然后生成key 这里会生成两个文件 id_rsa 和 id_rsa.pub 第三:登录你的GITHUB账号 看下图 第四:测试下是否成功 第五 ...

  10. CSS3 Flexbox轻松实现元素的水平居中和垂直居中

    CSS3 Flexbox轻松实现元素的水平居中和垂直居中 网上有很多关于Flex的教程,对于Flex的叫法也不一,有的叫Flexbox,有的叫Flex,其实这两种叫法都没有错,只是Flexbox旧一点 ...