学习归并排序的过程是十分痛苦的。它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的。
很多朋友不理解时间复杂度低为什么运行速度不一定快,这个不清楚的伙伴可以看下我之前发表的文章http://www.cnblogs.com/Lin-Yi/p/7301535.html
看完之后也许你会对时间复杂度有一个新的认识。 我谈的观点往往不是官方的定义,我希望能帮助更多基础薄弱的同学读懂思想~ 归并排序:
先分开再合并,分开成单个元素,合并的时候按照正确顺序合并 假如我们有一个n个数的数列,下标从0到n-1
  首先是分开的过程
1 我们按照 n//2 把这个数列分成两个小的数列
2 把两个小数列 再按照新长度的一半 把每个小数列都分成两个更小的
。。。一直这样重复,一直到每一个数分开了
比如: 6 5 4 3 2 1
第一次 n=6 n//2=3 分成 6 5 4 3 2 1
第二次 n=3 n//2=1 分成 6 5 4 3 2 1
第三次 n=1的部分不分了
n=2 n//2=1 分成 5 4 2 1 之后是合并排序的过程:
3 分开之后我们按照最后分开的两个数比较大小形成正确顺序后组合绑定
刚刚举得例子 最后一行最后分开的数排序后绑定 变成 4 5 1 2
排序后倒数第二行相当于把最新分开的数排序之后变成 6 4 5 3 12
4 对每组数据按照上次分开的结果,进行排序后绑定
6 和 4 5(两个数绑定了) 进行排序
3 和 1 2(两个数绑定了) 进行排序
排完后 上述例子第一行待排序的 4 5 6 1 2 3 两组数据
5 对上次分开的两组进行排序
拿着 4 5 6 1 2 3两个数组,进行排序,每次拿出每个数列中第一个(最小的数)比较,把较小的数放入结果数组。再进行下一次排序。
每个数组拿出第一个数,小的那个拿出来放在第一位 1 拿出来了, 变成4 5 6 2 3
每个数组拿出第一个书比较小的那个放在下一个位置 1 2被拿出来, 待排序 4 5 6 2
每个数组拿出第一个书比较小的那个放在下一个位置 1 2 3 被拿出来, 待排序 4 5 6
如果一个数组空了,说明另一个数组一定比排好序的数组最后一个大 追加就可以结果 1 2 3 4 5 6
相当于我们每次拿到两个有序的列表进行合并,分别从两个列表第一个元素比较,把小的拿出来,在拿新的第一个元素比较,把小的拿出来
这样一直到两个列表空了 就按顺序合并了两个列表 结束 时间复杂度: 最好最坏都是 O( n log n )
稳定性:稳定
缺点:每次拆分数组都要开心的数组, 每次合并数组都要开新数组,空间复杂度很大 在python中这样实现
 def merge_sort( li ):
#不断递归调用自己一直到拆分成成单个元素的时候就返回这个元素,不再拆分了
if len(li) == 1:
return li #取拆分的中间位置
mid = len(li) // 2
#拆分过后左右两侧子串
left = li[:mid]
right = li[mid:] #对拆分过后的左右再拆分 一直到只有一个元素为止
#最后一次递归时候ll和lr都会接到一个元素的列表
# 最后一次递归之前的ll和rl会接收到排好序的子序列
ll = merge_sort( left )
rl =merge_sort( right ) # 我们对返回的两个拆分结果进行排序后合并再返回正确顺序的子列表
# 这里我们调用拎一个函数帮助我们按顺序合并ll和lr
return merge(ll , rl) #这里接收两个列表
def merge( left , right ):
# 从两个有顺序的列表里边依次取数据比较后放入result
# 每次我们分别拿出两个列表中最小的数比较,把较小的放入result
result = []
while len(left)>0 and len(right)>0 :
#为了保持稳定性,当遇到相等的时候优先把左侧的数放进结果列表,因为left本来也是大数列中比较靠左的
if left[0] <= right[0]:
result.append( left.pop(0) )
else:
result.append( right.pop(0) )
#while循环出来之后 说明其中一个数组没有数据了,我们把另一个数组添加到结果数组后面
result += left
result += right
return result if __name__ == '__main__':
li = [5,4 ,3 ,2 ,1]
li2 = merge_sort(li)
print(li2)

算法过程理解起来非常痛苦 呜呜!好委屈

不过我希望大家静下心来一点点学,一定会有所收获!

python实现归并排序,归并排序的详细分析。的更多相关文章

  1. python文件路径分隔符的详细分析

    写了挺久的python,文件分隔符的掌握肯定是必须的,但是我之前写的都是不规范的文件路径分隔符,例如‘’C:\User\temp\python.txt’,一直都没有报过错.也不知为啥,今天查阅资料才知 ...

  2. python实现归并排序,归并排序的详细分析

    python实现归并排序,归并排序的详细分析.   学习归并排序的过程是十分痛苦的.它并不常用,看起来时间复杂度好像是几种排序中最低的,比快排的时间复杂度还要低,但是它的执行速度不是最快的.很多朋友不 ...

  3. python中的归并排序

    本来在博客上看到用python写的归并排序的程序,然后自己跟着他写了一下,结果发现是错的,不得不自己操作.而自己对python不是非常了解所以就变百度边写,最终在花了半个小时之后就写好了. def m ...

  4. python算法之归并排序

    归并排序 归并排序是采用分治法的一个非常典型的应用.归并排序的思想就是先递归分解数组,再合并数组. 将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相 ...

  5. Python爬虫爬取全书网小说,程序源码+程序详细分析

    Python爬虫爬取全书网小说教程 第一步:打开谷歌浏览器,搜索全书网,然后再点击你想下载的小说,进入图一页面后点击F12选择Network,如果没有内容按F5刷新一下 点击Network之后出现如下 ...

  6. python笔记之常用模块用法分析

    python笔记之常用模块用法分析 内置模块(不用import就可以直接使用) 常用内置函数 help(obj) 在线帮助, obj可是任何类型 callable(obj) 查看一个obj是不是可以像 ...

  7. HashMap 源码详细分析(JDK1.8)

    一.概述 本篇文章我们来聊聊大家日常开发中常用的一个集合类 - HashMap.HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现.HashMap 允许 null 键和 null 值, ...

  8. scrapy爬虫具体案例步骤详细分析

    scrapy爬虫具体案例详细分析 scrapy,它是一个整合了的爬虫框架, 有着非常健全的管理系统. 而且它也是分布式爬虫, 它的管理体系非常复杂. 但是特别高效.用途广泛,主要用于数据挖掘.检测以及 ...

  9. scrapy爬虫具体案例详细分析

    scrapy爬虫具体案例详细分析 scrapy,它是一个整合了的爬虫框架, 有着非常健全的管理系统. 而且它也是分布式爬虫, 它的管理体系非常复杂. 但是特别高效.用途广泛,主要用于数据挖掘.检测以及 ...

  10. Linux内核TCP MSS机制详细分析

    前言 上周Linux内核修复了4个CVE漏洞[1],其中的CVE-2019-11477感觉是一个很厉害的Dos漏洞,不过因为有其他事打断,所以进展的速度比较慢,这期间网上已经有相关的分析文章了.[2] ...

随机推荐

  1. Unity3D判断角色对敌人是否可见

    在编写敌人AI的状态机时 经常需要判断角色对敌人来说是不是可见的 如果是可见的,则做出追击或者攻击动作 如果是不可见的,则保持idle或者巡逻状态 判断是否可见 包括两个步骤 1.地方角色的视见向量和 ...

  2. Linux环境下安装配置Node.js

    1.在官网查看版本,LTS代表长期支持的版本 2.进入服务器 3.输入命令:·wget https://npm.taobao.org/mirrors/node/v8.9.3/node-v8.9.3-l ...

  3. Linux目录结构和基础知识

    目录结构: /bin:存放系统常用的命令程序 /boot:系统启动或引导所需要的一些文件 /dev:可用的设备文件 /etc:系统配置相关的东西 /home:所有用户的主目录 /lib,lib64:存 ...

  4. Python上下文管理器

    在Python中让自己创建的函数.类.对象支持with语句,就实现了上线文管理协议.我们经常使用with open(file, "a+") as f:这样的语句,无需手动调用f.c ...

  5. Java内存区域之程序计数器--《深入理解Java虚拟机》学习笔记及个人理解(一)

    Java虚拟机程序计数器 在书上的P39页 程序计数器干嘛的? 有了它,字节码解释器才可以知道下一条要执行的字节码指令是哪个. 无论是取下一条指令还是分支.循环.跳转.中断.线程恢复,都需要这个程序计 ...

  6. JSON基础(JavaScript)

    1.在JS中使用JSON,先将字符转换为JOSN格式然后就可以直接使用: var obj = JSON.parse(cInfoObj) $('#staffName').val(obj.candidat ...

  7. 1833 深坑 TLE 求解

    题目描述: 大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 ...

  8. MYSQL数据库学习十六 安全性机制

    16.1 MYSQL数据库所提供的权限 16.1.1 系统表 mysql.user 1. 用户字段 Host:主机名: User:用户名: Password:密码. 2. 权限字段 以“_priv”字 ...

  9. 【Python】 uuid生成唯一ID

    uuid uuid是128位的全局唯一标识符(univeral unique identifier),通常用32位的一个字符串的形式来表现.有时也称guid(global unique identif ...

  10. http,socks4,socks5代理的区别

    HTTP代理 能够代理客户机的HTTP访问,主要是代理浏览器访问网页,它的端口一般为80.8080.3128等: SOCKS代理 SOCKS代理与其他类型的代理不同,它只是简单地传递数据包,而并不关心 ...