3597: [Scoi2014]方伯伯运椰子

题意:

from mhy12345

给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi,

当前容量上限ci,每单位通过该边花费di,限制网络流量不能改变。调整后必须满

流,设调整了K 次,使得费用减少量为D,最大化D/K


就是给你一个费用流,但不是最小,增广的费用为b+d,退流的费用为a-d

就是正反向增广路

根据消圈定理流f为mcmf当且仅当无负费用增广圈

01分数规划+spfa求负环即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
#define fir first
#define sec second
const int N = 505, M = 1e4+5, mo = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m;
double l, r; struct edge {int v, ne; double w;} e[M];
int cnt, h[N];
inline void ins(int u, int v, double w) {
e[++cnt] = (edge) {v, h[u], w}; h[u] = cnt;
}
namespace nc {
int vis[N], T; double d[N];
bool dfs(int u, double mid) {
vis[u] = T;
for(int i=h[u]; i; i=e[i].ne) {
int v = e[i].v; double w = e[i].w + mid;
if(d[v] > d[u] + w) {
d[v] = d[u] + w;
if(vis[v] == T || dfs(v, mid)) return true;
}
}
vis[u] = 0;
return false;
}
bool neg_circle(double mid) {
memset(vis, 0, sizeof(vis));
memset(d, 0, sizeof(d));
for(T=1; T<=n+2; T++) if(dfs(T, mid)) return true;
return false;
}
}
bool check(double mid) {
return nc::neg_circle(mid);
}
int main() {
freopen("in", "r", stdin);
n = read(); m = read();
for(int i=1; i<=m; i++) {
int u = read(), v = read(), a = read(), b = read(), c = read(), d = read();
ins(u, v, b+d); if(c) ins(v, u, a-d);
r += c * d;
}
while(r - l > 1e-3) {
double mid = (l+r)/2.0;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l);
}

bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]的更多相关文章

  1. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  2. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  3. bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

    题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...

  4. bzoj 3597: [Scoi2014]方伯伯运椰子

    Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...

  5. BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)

    即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...

  6. 3597: [Scoi2014]方伯伯运椰子[分数规划]

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Sta ...

  7. 【BZOJ3597】方伯伯运椰子(分数规划,网络流)

    [BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...

  8. BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...

  9. [SCOI2014]方伯伯运椰子

    嘟嘟嘟 01分数规划思维题. 题中要求交通总量不减少,那么如果总量增加的话,总费用就会增加,所以一定不是更优的解.那么总量守恒. 这是不是就想到了网络流?对于每一个节点流入量等于流出量.然后就是很有思 ...

随机推荐

  1. D. Longest Subsequence

    D. Longest Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. sscanf()用法

    http://blog.chinaunix.net/uid-26284412-id-3189214.html #include<cstdio> #include<cstring> ...

  3. 数据结构课程设计四则运算表达式求值(C语言版)

    本系统为四则运算表达式求值系统,用于带小括号的一定范围内正负数的四则运算标准(中缀)表达式的求值.注意事项:    1.请保证输入的四则表达式的合法性.输入的中缀表达式中只能含有英文符号"+ ...

  4. 如何检测浏览器url变化

    用户通过“点击触发”,“操作历史”,“直接访问URL”的方式修改当前URL.这三种触发方式会使浏览器做出不同的行为 html5提供了两种方式在页面中操作历史 history.pushState(sta ...

  5. Python3 的注释

    单行注释 # 这是一个注释 print("Hello, World!") 多行注释 1:3个单引号 ''' 这是多行注释,用三个单引号 这是多行注释,用三个单引号 这是多行注释,用 ...

  6. 有经验JAVA程序员如何提升自己?

    作为一个具有一到五年开发经验程序员,需要学习内容很多: JVM/分布式/高并发/性能优化/Spring MVC/Spring Boot/Spring Cloud/MyBatis/Netty源码分析等等 ...

  7. android 基础04-BroadCastReceiver

    Android 系统中的广播(BroadCast) 是组件与组件进行的一种可跨线程的通信方式.类似于 广播者-订阅者(publish-subscribe) 的实现,当系统或者某个应用的状态发生改变时, ...

  8. Ubuntu问题:E45: 'readonly' option is set (add ! to override)错误解决

    问题描述:E45: 'readonly' option is set (add ! to override) 问题分析:该错误为当前用户没有权限对文件作修改 问题解决: 输入 :w !sudo tee ...

  9. MYSQL优化派生表(子查询)在From语句中的

    Mysql 在5.6.3中,优化器更有效率地处理派生表(在from语句中的子查询): 优化器推迟物化子查询在from语句中的子查询,知道子查询的内容在查询正真执行需要时,才开始物化.这一举措提高了性能 ...

  10. beetl模板引擎使用笔记

    maven项目pom: <dependency> <groupId>com.ibeetl</groupId> <artifactId>beetl< ...