【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 99 Solved: 65Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:A:麻花,B:麻花、包子A:麻花、麻花,B:包子A:包子,B:麻花、麻花A:麻花、包子,B:麻花Input
输入数据第一行是同学的数量N 和特产的数量M。第二行包含M 个整数,表示每一种特产的数量。N, M 不超过1000,每一种特产的数量不超过1000Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果MOD 1,000,000,007 的数值就可以了。Sample Input
5 4
1 3 3 5Sample Output
384835HINT
Source
【分析】
做这种题要容斥原理和组合数学都好才可以啊
假设只有一种,那么就是把n个球分到m个集合里面,要非空,就是C[N-1][M-1]
但是有多种,每种分别讨论的话是不能保证非空的,合起来讨论的话最后也不能除以x!【我一开始就这样错
所以要用容斥,
答案=总-至少一个空+至少两个空-至少三个空。。。
然后子问题变成n个球分到m个集合里,可以空,就是C[n+m-1][n-1]。因为是“至少”。
乘起来容斥即可。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1100
#define Mod 1000000007
#define LL long long int w[Maxn],c[*Maxn][*Maxn]; void init(int n)
{
for(int i=;i<=;i++) c[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%Mod;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
init(n);
int ans=;
for(int i=;i<=m;i++)
{
scanf("%d",&w[i]);
}
for(int i=;i<n;i++)
{
int nw=,ii=n-i;
for(int j=;j<=m;j++)
{
nw=1LL*nw*c[w[j]+ii-][ii-]%Mod;
}
if(i&) ans=(ans-1LL*c[n][i]*nw%Mod)%Mod;
else ans=(ans+1LL*c[n][i]*nw)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}
2017-04-19 21:23:51
【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- 【bzoj 4710】 [Jsoi2011]分特产
题目 容斥加组合计数 显然答案是 \[\sum_{i=0}^n(-1)^i\binom{n}{i}f_{n-i}\] \(f_i\)表示至多有\(i\)个人没有拿到特产 考虑求\(f\) 发现\(m\ ...
- 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
随机推荐
- MongoDB - MongoDB CRUD Operations, Query Documents, Iterate a Cursor in the mongo Shell
The db.collection.find() method returns a cursor. To access the documents, you need to iterate the c ...
- CSS浏览器兼容问题集-第三部分
FF与IE 1. Div居中问题 div设置 margin-left, margin-right 为 auto 时已经居中,IE 不行,IE需要设定body居中,首先在父级元素定义text-algin ...
- [php]http响应头解析
(Status-Line) HTTP/ OK Cache-Control no-cache Content-Length Content-Type image/gif Date Sat, Dec :: ...
- 【BZOJ】1087: [SCOI2005]互不侵犯King
[算法]状态压缩型DP [题解]http://www.cnblogs.com/xtx1999/p/4620227.html (orz) https://www.cnblogs.com/zbtrs/p/ ...
- MFC CListCtrl 将一个列表的选中项添加到另一个列表
MFC CListCtrl 将一个列表的选中项添加到另一个列表, 用VC6.0实现: 简单记录一下自己的学习历程, 和大家分享,如果对你有用,我很高兴. 1.新建一个基于对话框的工程(Dialog-B ...
- 天梯赛 L2-001 紧急救援 (最短路 dij)
作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...
- MYSQL的隐式类型转换
官方文档中是这么说的 当操作者使用不同类型的操作数,操作数类型兼容的出现使 转换.一些 发生隐式转换.例如,MySQL会自动 将数字转换为字符串的必要,反之亦然. 也可以将数字转换为字符串明确 使用( ...
- discuz 积分按日重新计算,(摒弃以前24小时计算)
修改\source\module\forum\forum_misc.php将 foreach(C::t('forum_ratelog')->fetch_all_sum_score($_G['ui ...
- Balanced and stabilized quicksort method
The improved Quicksort method of the present invention utilizes two pointers initialized at opposite ...
- [ python ] FTP作业进阶
作业:开发一个支持多用户在线的FTP程序 要求: 用户加密认证 允许同时多用户登录 每个用户有自己的家目录 ,且只能访问自己的家目录 对用户进行磁盘配额,每个用户的可用空间不同 允许用户在ftp se ...