Magic Grid

Time Limit:336MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

Thanks a lot for helping Harry Potter in finding the Sorcerer's Stone of Immortality in October. Did we not tell you that it was just an online game ? uhhh! now here is the real onsite task for Harry. You are given a magrid S ( a magic grid ) having R rows and C columns. Each cell in this magrid has either a Hungarian horntail dragon that our intrepid hero has to defeat, or a flask of magic potion that his teacher Snape has left for him. A dragon at a cell (i,j) takes away |S[i][j]| strength points from him, and a potion at a cell (i,j) increases Harry's strength by S[i][j]. If his strength drops to 0 or less at any point during his journey, Harry dies, and no magical stone can revive him.

Harry starts from the top-left corner cell (1,1) and the Sorcerer's Stone is in the bottom-right corner cell (R,C). From a cell (i,j), Harry can only move either one cell down or right i.e., to cell (i+1,j) or cell (i,j+1) and he can not move outside the magrid. Harry has used magic before starting his journey to determine which cell contains what, but lacks the basic simple mathematical skill to determine what minimum strength he needs to start with to collect the Sorcerer's Stone. Please help him once again.

 

Input (STDIN):

The first line contains the number of test cases T. T cases follow. Each test case consists of R C in the first line followed by the description of the grid in R lines, each containing C integers. Rows are numbered 1 to R from top to bottom and columns are numbered 1 to C from left to right. Cells with S[i][j] < 0 contain dragons, others contain magic potions.

Output (STDOUT):

Output T lines, one for each case containing the minimum strength Harry should start with from the cell (1,1) to have a positive strength through out his journey to the cell (R,C).

Constraints:

1 ≤ T ≤ 5

2 ≤ R, C ≤ 500

-10^3 ≤ S[i][j] ≤ 10^3

S[1][1] = S[R][C] = 0

Sample Input:

3

2 3

0 1 -3

1 -2 0

2 2

0 1

2 0

3 4

0 -2 -3 1

-1 4 0 -2

1 -2 -3 0

Sample Output 

2

1

2

Explanation:

 

Case 1 : If Harry starts with strength = 1 at cell (1,1), he cannot maintain a positive strength in any possible path. He needs at least strength = 2 initially.

Case 2 : Note that to start from (1,1) he needs at least strength = 1.

题解:

  1. 首先在任何位置剩下的体力至少为1,而且只能向下或者是向右,那么很容易想到动态规划,用m记录当前地图上将消耗或是增加的体力,然后从最后一个位置往前,每个位置计算出当前位置需要的最少的体力。最后计算到第一个位置即可。

  2. 利用递推式  d[i][j]= max(1,min(d[i+1][j]-m[i][j],d[i][j+1]-m[i][j])); 最后面一列和最下面的一行先计算。

以下是代码:

#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std; #define ss(x) scanf("%d",&x)
#define ff(i,s,e) for(int i=s;i<e;i++)
#define fe(i,s,e) for(int i=s;i<=e;i++)
#define print(x) printf("%d\n",x);
#define write() freopen("1.in","r",stdin); const int N =510;
int m[N][N];
int d[N][N];
int r,c;
void input(){
ss(r);ss(c);
fe(i,1,r)
fe(j,1,c)
ss(m[i][j]);
}
void dp(){
d[r][c]=1;
for(int i=r-1;i>=1;i--)//先计算最右边一列
d[i][c] = max(1,d[i+1][c]-m[i][c]);
for(int i=c-1;i>=1;i--)//先计算最下面一行
d[r][i]= max(1,d[r][i+1]-m[r][i]);
for(int i=r-1;i>=1;i--)
for(int j=c-1;j>=1;j--)//遍历计算其他所有的
d[i][j]= max(1,min(d[i+1][j]-m[i][j],d[i][j+1]-m[i][j]));
}
int main(){
//write();
int T;
ss(T);
while(T--){
input();
dp();
print(d[1][1]);//输出第一个即可;
}
}

  

Spring-2-A Magic Grid(SPOJ AMR11A)解题报告及测试数据的更多相关文章

  1. Spring-2-J Goblin Wars(SPOJ AMR11J)解题报告及测试数据

    Goblin Wars Time Limit:432MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Description Th ...

  2. Spring-2-B Save the Students(SPOJ AMR11B)解题报告及测试数据

    Save the Students Time Limit:134MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descri ...

  3. Spring-2-H Array Diversity(SPOJ AMR11H)解题报告及测试数据

    Array Diversity Time Limit:404MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Descript ...

  4. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  5. Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Descript ...

  6. Spring-1-H Number Sequence(HDU 5014)解题报告及测试数据

    Number Sequence Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Pro ...

  7. Spring-1-F Dice(HDU 5012)解题报告及测试数据

    Dice Time Limit:1000MS     Memory Limit:65536KB Description There are 2 special dices on the table. ...

  8. Spring-1-E Game(HDU 5011)解题报告及测试数据

    Game Time Limit:1000MS     Memory Limit:65536KB Description Here is a game for two players. The rule ...

  9. Spring-1-A Post Robot(HDU 5007)解题报告及测试数据

    Post Robot Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K Problem Description ...

随机推荐

  1. Maven仓库的搭建

    http://blog.csdn.net/xiao__gui/article/details/52625660 Maven仓库是有特定规则的目录结构. 目录结构由 仓库根目录 , groupId , ...

  2. 【H.264/AVC视频编解码技术具体解释】十三、熵编码算法(4):H.264使用CAVLC解析宏块的残差数据

    <H.264/AVC视频编解码技术具体解释>视频教程已经在"CSDN学院"上线,视频中详述了H.264的背景.标准协议和实现,并通过一个实战project的形式对H.2 ...

  3. insmod 内核模块参数传递

    对于如何向模块传递参数,Linux kernel 提供了一个简单的框架.其允许驱动程序声明参数,并且用户在系统启动或模块装载时为参数指定相应值,在驱动程序里,参数的用法如同全局变量. 通过宏modul ...

  4. spring-boot Web集群

    SpringBoot启动类增加注解 @EnableRedisHttpSession @SpringBootApplication @ImportResource({"classpath:co ...

  5. 170418、vmware 安装 centos 开启网卡自启动

    前言:CentOS虚拟机安装成功后,默认开机未启用网关,通过修改配置文件,启用网卡 开启方法如下: 1.登录系统,虚拟机安装完成后,第一次登录系统,系统只有一个账号,即超级管理员root账户,输入安装 ...

  6. Spring的AOP-----HelloWord

    这里就一个计算器开发为例1搭建环境-搭配好Spring的AOP开发环境导入以下这些包:2建立好核心处理模块的类ArithmeticCalculator: package com.jeremy.spri ...

  7. Centos7.2yum安装时候出现db5错误的解决办法

    Centos7.2使用yum安装软件是出现如此错误提示 解决办法 删除 /var/lib/rpm文件夹下面所有以__db开头的文件

  8. 【转载】Java并发编程:volatile关键字解析

    http://www.cnblogs.com/dolphin0520/p/3920373.html

  9. 自定义DataSet

    //创建数据集 DataSet dataSet = new DataSet(); //创建虚拟数据表 DataTable datatable = new DataTable(); //获取列集合,添加 ...

  10. Pulsar

    The Apache Software Foundation Announces Apache® Pulsar™ as a Top-Level Project : The Apache Softwar ...