3.1.7. Cross validation of time series data

Time series data is characterised by the correlation between observations that are near in time (autocorrelation). However, classical cross-validation techniques such as KFold and ShuffleSplit assume the samples are independent and identically distributed, and would result in unreasonable correlation between training and testing instances (yielding poor estimates of generalisation error) on time series data. Therefore, it is very important to evaluate our model for time series data on the “future” observations least like those that are used to train the model. To achieve this, one solution is provided by TimeSeriesSplit.

3.1.7.1. Time Series Split

TimeSeriesSplit is a variation of k-fold which returns first  folds as train set and the  th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Also, it adds all surplus data to the first training partition, which is always used to train the model.

This class can be used to cross-validate time series data samples that are observed at fixed time intervals.

Example of 3-split time series cross-validation on a dataset with 6 samples:

>>>

>>> from sklearn.model_selection import TimeSeriesSplit

>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
TimeSeriesSplit(n_splits=3)
>>> for train, test in tscv.split(X):
... print("%s %s" % (train, test))
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]

3.1.7. Cross validation of time series data的更多相关文章

  1. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  2. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  3. Cross Validation done wrong

    Cross Validation done wrong Cross validation is an essential tool in statistical learning 1 to estim ...

  4. 交叉验证(cross validation)

    转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据 ...

  5. 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)

    10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...

  6. Cross Validation(交叉验证)

    交叉验证(Cross Validation)方法思想 Cross Validation一下简称CV.CV是用来验证分类器性能的一种统计方法. 思想:将原始数据(dataset)进行分组,一部分作为训练 ...

  7. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

  8. 交叉验证(Cross Validation)简介

    参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...

  9. cross validation笔记

    preface:做实验少不了交叉验证,平时常用from sklearn.cross_validation import train_test_split,用train_test_split()函数将数 ...

随机推荐

  1. 【Python】用文本打印树

    From:http://zhidao.baidu.com/link?url=O8U5TynGBMojDw2iFhlghPPf5_ZE1X8CAQMrK19pv-KxhvKCc6Z2yzsoQaukgN ...

  2. jQuery实现高亮显示网页关键词的方法

    本文实例讲述了jQuery实现高亮显示网页关键词的方法.分享给大家供大家参考.具体如下: 这是一款基于jquery实现的高亮显示网页上搜索关键词的代码,当你在文本框中输入的时候,如果下面的正文中包括你 ...

  3. 在ASP.NET MVC 3 中自定义AuthorizeAttribute时需要注意的页面缓存问题

    一.ASP.NET MVC中使用OutputCache实现服务器端页面级缓存 在ASP.NET MVC中,假如我们想要将某个页面(即某个Action)缓存在服务器端,可以在Action上标上以下特性: ...

  4. jboss eap 6.4 部署 从weblogic迁移

    从weblogic10.3像jboss 6.4项目迁移,遇到的一些问题: 因为使用weblogic可以自定义公共的war包库,在使用jboss中,也采取项目依赖公共库的方式: 1.jboss中使用公共 ...

  5. 实现 IteratorAggregate接口

    <?php class MyIterator implements Iterator{ private $var = array(); public function __construct($ ...

  6. Spring中bean的作用范围

    singleton作用域: Spring的scope的默认值是singleton Spring 只会为每一个bean创建一个实例,并保持bean的引用. <bean id="bean的 ...

  7. spring基础---->spring自定义标签(一)

    Spring具有一个基于架构的扩展机制,可以使用xml文件定义和配置bean.本博客将介绍如何编写自定义XML bean的解析器,并用实例来加以说明.其实我一直相信 等你出现的时候我就知道是你. Sp ...

  8. LeetCode 笔记系列九 Search in Rotated Sorted Array

    题目: Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7  ...

  9. 160303、js加密跟后台加密对应

    md5.js var hexcase = 0; var b64pad = ""; var chrsz = 8; function hex_md5(s){ return binl2h ...

  10. 爬虫用到的库Beautiful Soup

    Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时 ...