Spark高级数据分析· 3推荐引擎
推荐算法流程
预备
wget http://www.iro.umontreal.ca/~lisa/datasets/profiledata_06-May-2005.tar.gz
cd /Users/erichan/garden/spark-1.6.0-bin-hadoop2.6/bin
./spark-shell --master local --driver-memory 6g
1 准备数据
val data ="/Users/erichan/AliDrive/ml_spark/data/profiledata_06-May-2005"
val rawUserArtistData = sc.textFile(data+"/user_artist_data.txt",10)
// ALS 需要ID必须为数值型
rawUserArtistData.first
//res3: String = 1092764 1000311
//rawUserArtistData.map(_.split(' ')(0).toDouble).stats()
//res10: org.apache.spark.util.StatCounter = (count: 24296858, mean: 1947573.265353, stdev: 496000.544975, max: 2443548.000000, min: 90.000000)
//rawUserArtistData.map(_.split(' ')(1).toDouble).stats()
//res11: org.apache.spark.util.StatCounter = (count: 24296858, mean: 1718704.093757, stdev: 2539389.040171, max: 10794401.000000, min: 1.000000)
val rawArtistData = sc.textFile(data+"/artist_data.txt")
//rawArtistData.first
//res12: String = 1134999 06Crazy Life
val artistByID = rawArtistData.flatMap { line =>
val (id, name) = line.span(_ != '\t')
if (name.isEmpty) {
None
}else{
try {
Some((id.toInt, name.trim))
} catch {
case e: NumberFormatException => None
}
}
}
val rawArtistAlias = sc.textFile(data+"/artist_alias.txt")
val artistAlias = rawArtistAlias.flatMap { line =>
val tokens = line.split('\t')
if (tokens(0).isEmpty) {
None
}else{
Some((tokens(0).toInt, tokens(1).toInt))
}
}.collectAsMap()
//artistByID.lookup(1000010).head
//res14: String = Aerosmith
2 建模
import org.apache.spark.mllib.recommendation._
val bArtistAlias = sc.broadcast(artistAlias)
val trainData = rawUserArtistData.map { line =>
val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
val finalArtistID = bArtistAlias.value.getOrElse(artistID, artistID)
Rating(userID, finalArtistID, count)
}.cache()
val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)
3 检验
val rawArtistsForUser = rawUserArtistData.map(_.split(' ')).filter {
case Array(user,_,_) => user.toInt == 2093760
}
val existingProducts = rawArtistsForUser.map {
case Array(_,artist,_) => artist.toInt
}.collect().toSet
artistByID.filter {
case (id, name) => existingProducts.contains(id)
}.values.collect().foreach(println)
val recommendations = model.recommendProducts(2093760, 5)
recommendations.foreach(println)
val recommendedProductIDs = recommendations.map(_.product).toSet
artistByID.filter {
case (id, name) => recommendedProductIDs.contains(id)
}.values.collect().foreach(println)
4 评价
:load /Users/erichan/sourcecode/book/aas/ch03-recommender/src/main/scala/RunAUC.scala
val bArtistAlias = sc.broadcast(RunAUC.buildArtistAlias(rawArtistAlias))
val allData = RunAUC.buildRatings(rawUserArtistData, bArtistAlias)
val Array(trainData, cvData) = allData.randomSplit(Array(0.9, 0.1))
trainData.cache()
cvData.cache()
val allItemIDs = allData.map(_.product).distinct().collect()
val bAllItemIDs = sc.broadcast(allItemIDs)
val mostListenedAUC = RunAUC.areaUnderCurve(cvData, bAllItemIDs, RunAUC.predictMostListened(sc, trainData))
println(mostListenedAUC)
//0.9395286660878177
trainData.unpersist()
cvData.unpersist()
5 推荐
val someUsers = allData.map(_.user).distinct().take(100)
val someRecommendations = someUsers.map(userID => model.recommendProducts(userID, 5))
someRecommendations.map(
recs => recs.head.user + " -> " + recs.map(_.product).mkString(", ")
).foreach(println)
附录
RunAUC.scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.mllib.recommendation._
import org.apache.spark.rdd.RDD
import scala.collection.Map
import scala.collection.mutable.ArrayBuffer
import scala.util.Random
/**
* Created by erichan
* on 16/1/26.
*/
object RunAUC {
def areaUnderCurve(
positiveData: RDD[Rating],
bAllItemIDs: Broadcast[Array[Int]],
predictFunction: (RDD[(Int,Int)] => RDD[Rating])) = {
// What this actually computes is AUC, per user. The result is actually something
// that might be called "mean AUC".
// Take held-out data as the "positive", and map to tuples
val positiveUserProducts = positiveData.map(r => (r.user, r.product))
// Make predictions for each of them, including a numeric score, and gather by user
val positivePredictions = predictFunction(positiveUserProducts).groupBy(_.user)
// BinaryClassificationMetrics.areaUnderROC is not used here since there are really lots of
// small AUC problems, and it would be inefficient, when a direct computation is available.
// Create a set of "negative" products for each user. These are randomly chosen
// from among all of the other items, excluding those that are "positive" for the user.
val negativeUserProducts = positiveUserProducts.groupByKey().mapPartitions {
// mapPartitions operates on many (user,positive-items) pairs at once
userIDAndPosItemIDs => {
// Init an RNG and the item IDs set once for partition
val random = new Random()
val allItemIDs = bAllItemIDs.value
userIDAndPosItemIDs.map { case (userID, posItemIDs) =>
val posItemIDSet = posItemIDs.toSet
val negative = new ArrayBuffer[Int]()
var i = 0
// Keep about as many negative examples per user as positive.
// Duplicates are OK
while (i < allItemIDs.size && negative.size < posItemIDSet.size) {
val itemID = allItemIDs(random.nextInt(allItemIDs.size))
if (!posItemIDSet.contains(itemID)) {
negative += itemID
}
i += 1
}
// Result is a collection of (user,negative-item) tuples
negative.map(itemID => (userID, itemID))
}
}
}.flatMap(t => t)
// flatMap breaks the collections above down into one big set of tuples
// Make predictions on the rest:
val negativePredictions = predictFunction(negativeUserProducts).groupBy(_.user)
// Join positive and negative by user
positivePredictions.join(negativePredictions).values.map {
case (positiveRatings, negativeRatings) =>
// AUC may be viewed as the probability that a random positive item scores
// higher than a random negative one. Here the proportion of all positive-negative
// pairs that are correctly ranked is computed. The result is equal to the AUC metric.
var correct = 0L
var total = 0L
// For each pairing,
for (positive <- positiveRatings;
negative <- negativeRatings) {
// Count the correctly-ranked pairs
if (positive.rating > negative.rating) {
correct += 1
}
total += 1
}
// Return AUC: fraction of pairs ranked correctly
correct.toDouble / total
}.mean() // Return mean AUC over users
}
def predictMostListened(sc: SparkContext, train: RDD[Rating])(allData: RDD[(Int,Int)]) = {
val bListenCount =
sc.broadcast(train.map(r => (r.product, r.rating)).reduceByKey(_ + _).collectAsMap())
allData.map { case (user, product) =>
Rating(user, product, bListenCount.value.getOrElse(product, 0.0))
}
}
def buildArtistAlias(rawArtistAlias: RDD[String]): Map[Int,Int] =
rawArtistAlias.flatMap { line =>
val tokens = line.split('\t')
if (tokens(0).isEmpty) {
None
} else {
Some((tokens(0).toInt, tokens(1).toInt))
}
}.collectAsMap()
def buildRatings(
rawUserArtistData: RDD[String],
bArtistAlias: Broadcast[Map[Int,Int]]) = {
rawUserArtistData.map { line =>
val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
val finalArtistID = bArtistAlias.value.getOrElse(artistID, artistID)
Rating(userID, finalArtistID, count)
}
}
}
Spark高级数据分析· 3推荐引擎的更多相关文章
- 基于Spark ALS构建商品推荐引擎
基于Spark ALS构建商品推荐引擎 一般来讲,推荐引擎试图对用户与某类物品之间的联系建模,其想法是预测人们可能喜好的物品并通过探索物品之间的联系来辅助这个过程,让用户能更快速.更准确的获得所需 ...
- Spark高级数据分析——纽约出租车轨迹的空间和时间数据分析
Spark高级数据分析--纽约出租车轨迹的空间和时间数据分析 一.地理空间分析: 二.pom.xml 原文地址:https://www.jianshu.com/p/eb6f3e0c09b5 作者:II ...
- Spark高级数据分析-第2章 用Scala和Spark进行数据分析
2.4 小试牛刀:Spark shell和SparkContext 本章使用的资料来自加州大学欧文分校机器学习资料库(UC Irvine Machine Learning Repository),这个 ...
- Spark高级数据分析中文版-读者交流
第二章: 备注:1.本书第二章样例数据由于才有的是短链接,国内的用户可能无法下载.我把数据集拷贝到百度网盘上.大家可以从这个地方下载:http://pan.baidu.com/s/1pJvjHA7 谢 ...
- Spark高级数据分析· 6LSA
潜在语义分析 wget http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles-multistream.xml.bz ...
- Spark高级数据分析· 2数据分析
wget https://archive.ics.uci.edu/ml/machine-learning-databases/00210/donation.zip 数据清洗 cd /Users/eri ...
- 0-Spark高级数据分析-读书笔记
学完了<Spark快速大数据分析>,对Spark有了一些了解,计划更近一步,开始学习<Spark高级数据分析>.这本书是用Scala写的,在学习的过程中想把其中的代码转换成Ja ...
- Spark 实践——用 Scala 和 Spark 进行数据分析
本文基于<Spark 高级数据分析>第2章 用Scala和Spark进行数据分析. 完整代码见 https://github.com/libaoquan95/aasPractice/tre ...
- 基于Azure构建PredictionIO和Spark的推荐引擎服务
基于Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://po ...
随机推荐
- ios8推送问题
博文转载至 http://blog.csdn.net/cerastes/article/details/39546625 ios8push推送通知适配 ios8推送问题 registerForRem ...
- 折腾deeplin系统
1.双系统失败记录 多系统启动问题 先安装完deepin,发现再安装windows怎么都起不起来,哪怕他们已经安装在不同的盘 (体现再Windows7通过ghost位于另外一个盘,但就是没有启动项) ...
- 常用的一些javascript小技巧
(转载)常用的一些javascript小技巧: http://bbs.blueidea.com/thread-2201069-1-1.html
- SG函数入门
sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2 ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- js apply 引申
apply 可以接受两个参数, fun.apply(thisArg[, argsArray]) 其中第二个参数是数组或类数组对象,所以有时传 arguments 也很正常,但是,认真的说,我测试出来: ...
- web容器与web服务器
apache.nginx 这类是web服务器tomcat.jboss.Kestrel(asp.net core) 这类是web容器而iis.jexus 两者都是 apache.nginx 是不能直接跑 ...
- packages managers
nodejs npm/bower/component ...rubygemsperl cpanpython pipOS X homebrewsublime text的package-control 那 ...
- 重装系统后Myeclipse遇到的项目配置问题--一个菜鸟的经历!
电脑不知道为什么流量突然变大了. 一查svchost.exe后台下载老多系统.某某安全卫士根本么用,运维说用某企鹅管家. 结果一个鸟样.. 之前是系统是32位的win7 4G内存用不完.又打算升级内 ...
- TestLink安装手册
环境准备 系统CentOS Linux release 7.3.1611 (Core) 搭建LAMP所需的集成包 xampp-linux-x64-7.2.0-0-installer.run 下载地址 ...