推荐算法流程

推荐算法

预备

wget http://www.iro.umontreal.ca/~lisa/datasets/profiledata_06-May-2005.tar.gz

cd /Users/erichan/garden/spark-1.6.0-bin-hadoop2.6/bin
./spark-shell --master local --driver-memory 6g

1 准备数据

val data ="/Users/erichan/AliDrive/ml_spark/data/profiledata_06-May-2005"
val rawUserArtistData = sc.textFile(data+"/user_artist_data.txt",10)
// ALS 需要ID必须为数值型
rawUserArtistData.first
//res3: String = 1092764 1000311
//rawUserArtistData.map(_.split(' ')(0).toDouble).stats()
//res10: org.apache.spark.util.StatCounter = (count: 24296858, mean: 1947573.265353, stdev: 496000.544975, max: 2443548.000000, min: 90.000000)
//rawUserArtistData.map(_.split(' ')(1).toDouble).stats()
//res11: org.apache.spark.util.StatCounter = (count: 24296858, mean: 1718704.093757, stdev: 2539389.040171, max: 10794401.000000, min: 1.000000) val rawArtistData = sc.textFile(data+"/artist_data.txt")
//rawArtistData.first
//res12: String = 1134999 06Crazy Life
val artistByID = rawArtistData.flatMap { line =>
val (id, name) = line.span(_ != '\t')
if (name.isEmpty) {
None
}else{
try {
Some((id.toInt, name.trim))
} catch {
case e: NumberFormatException => None
}
}
} val rawArtistAlias = sc.textFile(data+"/artist_alias.txt")
val artistAlias = rawArtistAlias.flatMap { line =>
val tokens = line.split('\t')
if (tokens(0).isEmpty) {
None
}else{
Some((tokens(0).toInt, tokens(1).toInt))
}
}.collectAsMap()
//artistByID.lookup(1000010).head
//res14: String = Aerosmith

2 建模

import org.apache.spark.mllib.recommendation._
val bArtistAlias = sc.broadcast(artistAlias)
val trainData = rawUserArtistData.map { line =>
val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
val finalArtistID = bArtistAlias.value.getOrElse(artistID, artistID)
Rating(userID, finalArtistID, count)
}.cache()
val model = ALS.trainImplicit(trainData, 10, 5, 0.01, 1.0)

3 检验

val rawArtistsForUser = rawUserArtistData.map(_.split(' ')).filter {
case Array(user,_,_) => user.toInt == 2093760
} val existingProducts = rawArtistsForUser.map {
case Array(_,artist,_) => artist.toInt
}.collect().toSet artistByID.filter {
case (id, name) => existingProducts.contains(id)
}.values.collect().foreach(println) val recommendations = model.recommendProducts(2093760, 5)
recommendations.foreach(println) val recommendedProductIDs = recommendations.map(_.product).toSet
artistByID.filter {
case (id, name) => recommendedProductIDs.contains(id)
}.values.collect().foreach(println)

4 评价

:load /Users/erichan/sourcecode/book/aas/ch03-recommender/src/main/scala/RunAUC.scala
val bArtistAlias = sc.broadcast(RunAUC.buildArtistAlias(rawArtistAlias))
val allData = RunAUC.buildRatings(rawUserArtistData, bArtistAlias)
val Array(trainData, cvData) = allData.randomSplit(Array(0.9, 0.1))
trainData.cache()
cvData.cache() val allItemIDs = allData.map(_.product).distinct().collect()
val bAllItemIDs = sc.broadcast(allItemIDs) val mostListenedAUC = RunAUC.areaUnderCurve(cvData, bAllItemIDs, RunAUC.predictMostListened(sc, trainData))
println(mostListenedAUC)
//0.9395286660878177
trainData.unpersist()
cvData.unpersist()

5 推荐

val someUsers = allData.map(_.user).distinct().take(100)
val someRecommendations = someUsers.map(userID => model.recommendProducts(userID, 5))
someRecommendations.map(
recs => recs.head.user + " -> " + recs.map(_.product).mkString(", ")
).foreach(println)

附录

RunAUC.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.mllib.recommendation._
import org.apache.spark.rdd.RDD import scala.collection.Map
import scala.collection.mutable.ArrayBuffer
import scala.util.Random /**
* Created by erichan
* on 16/1/26.
*/
object RunAUC {
def areaUnderCurve(
positiveData: RDD[Rating],
bAllItemIDs: Broadcast[Array[Int]],
predictFunction: (RDD[(Int,Int)] => RDD[Rating])) = {
// What this actually computes is AUC, per user. The result is actually something
// that might be called "mean AUC". // Take held-out data as the "positive", and map to tuples
val positiveUserProducts = positiveData.map(r => (r.user, r.product))
// Make predictions for each of them, including a numeric score, and gather by user
val positivePredictions = predictFunction(positiveUserProducts).groupBy(_.user) // BinaryClassificationMetrics.areaUnderROC is not used here since there are really lots of
// small AUC problems, and it would be inefficient, when a direct computation is available. // Create a set of "negative" products for each user. These are randomly chosen
// from among all of the other items, excluding those that are "positive" for the user.
val negativeUserProducts = positiveUserProducts.groupByKey().mapPartitions {
// mapPartitions operates on many (user,positive-items) pairs at once
userIDAndPosItemIDs => {
// Init an RNG and the item IDs set once for partition
val random = new Random()
val allItemIDs = bAllItemIDs.value
userIDAndPosItemIDs.map { case (userID, posItemIDs) =>
val posItemIDSet = posItemIDs.toSet
val negative = new ArrayBuffer[Int]()
var i = 0
// Keep about as many negative examples per user as positive.
// Duplicates are OK
while (i < allItemIDs.size && negative.size < posItemIDSet.size) {
val itemID = allItemIDs(random.nextInt(allItemIDs.size))
if (!posItemIDSet.contains(itemID)) {
negative += itemID
}
i += 1
}
// Result is a collection of (user,negative-item) tuples
negative.map(itemID => (userID, itemID))
}
}
}.flatMap(t => t)
// flatMap breaks the collections above down into one big set of tuples // Make predictions on the rest:
val negativePredictions = predictFunction(negativeUserProducts).groupBy(_.user) // Join positive and negative by user
positivePredictions.join(negativePredictions).values.map {
case (positiveRatings, negativeRatings) =>
// AUC may be viewed as the probability that a random positive item scores
// higher than a random negative one. Here the proportion of all positive-negative
// pairs that are correctly ranked is computed. The result is equal to the AUC metric.
var correct = 0L
var total = 0L
// For each pairing,
for (positive <- positiveRatings;
negative <- negativeRatings) {
// Count the correctly-ranked pairs
if (positive.rating > negative.rating) {
correct += 1
}
total += 1
}
// Return AUC: fraction of pairs ranked correctly
correct.toDouble / total
}.mean() // Return mean AUC over users
} def predictMostListened(sc: SparkContext, train: RDD[Rating])(allData: RDD[(Int,Int)]) = {
val bListenCount =
sc.broadcast(train.map(r => (r.product, r.rating)).reduceByKey(_ + _).collectAsMap())
allData.map { case (user, product) =>
Rating(user, product, bListenCount.value.getOrElse(product, 0.0))
}
} def buildArtistAlias(rawArtistAlias: RDD[String]): Map[Int,Int] =
rawArtistAlias.flatMap { line =>
val tokens = line.split('\t')
if (tokens(0).isEmpty) {
None
} else {
Some((tokens(0).toInt, tokens(1).toInt))
}
}.collectAsMap() def buildRatings(
rawUserArtistData: RDD[String],
bArtistAlias: Broadcast[Map[Int,Int]]) = {
rawUserArtistData.map { line =>
val Array(userID, artistID, count) = line.split(' ').map(_.toInt)
val finalArtistID = bArtistAlias.value.getOrElse(artistID, artistID)
Rating(userID, finalArtistID, count)
}
}
}

Spark高级数据分析· 3推荐引擎的更多相关文章

  1. 基于Spark ALS构建商品推荐引擎

    基于Spark ALS构建商品推荐引擎   一般来讲,推荐引擎试图对用户与某类物品之间的联系建模,其想法是预测人们可能喜好的物品并通过探索物品之间的联系来辅助这个过程,让用户能更快速.更准确的获得所需 ...

  2. Spark高级数据分析——纽约出租车轨迹的空间和时间数据分析

    Spark高级数据分析--纽约出租车轨迹的空间和时间数据分析 一.地理空间分析: 二.pom.xml 原文地址:https://www.jianshu.com/p/eb6f3e0c09b5 作者:II ...

  3. Spark高级数据分析-第2章 用Scala和Spark进行数据分析

    2.4 小试牛刀:Spark shell和SparkContext 本章使用的资料来自加州大学欧文分校机器学习资料库(UC Irvine Machine Learning Repository),这个 ...

  4. Spark高级数据分析中文版-读者交流

    第二章: 备注:1.本书第二章样例数据由于才有的是短链接,国内的用户可能无法下载.我把数据集拷贝到百度网盘上.大家可以从这个地方下载:http://pan.baidu.com/s/1pJvjHA7 谢 ...

  5. Spark高级数据分析· 6LSA

    潜在语义分析 wget http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles-multistream.xml.bz ...

  6. Spark高级数据分析· 2数据分析

    wget https://archive.ics.uci.edu/ml/machine-learning-databases/00210/donation.zip 数据清洗 cd /Users/eri ...

  7. 0-Spark高级数据分析-读书笔记

    学完了<Spark快速大数据分析>,对Spark有了一些了解,计划更近一步,开始学习<Spark高级数据分析>.这本书是用Scala写的,在学习的过程中想把其中的代码转换成Ja ...

  8. Spark 实践——用 Scala 和 Spark 进行数据分析

    本文基于<Spark 高级数据分析>第2章 用Scala和Spark进行数据分析. 完整代码见 https://github.com/libaoquan95/aasPractice/tre ...

  9. 基于Azure构建PredictionIO和Spark的推荐引擎服务

    基于Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://po ...

随机推荐

  1. D3D中的渲染状态简介

    1). 设置着色模式: SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT) //设置平面着色模式 SetRenderState(D3DRS_SHADEMODE ...

  2. 用一个二维码做下载地址,自动区分是 ios 还是 android

    用一个二维码做下载地址,自动区分是 ios 还是 android, 甚至区分 iphone  和 ipad. <html> <head> <meta http-equiv ...

  3. SharePoint Managed Metadata 使用总结

    前言 本文完全原创,转载请说明出处,希望对大家有用. 在SharePoint开发中,通常我们会将数据存储在列表,文档库或者直接存到数据库.但涉及到数据的层级结构时,用列表等存储实现并不是一件简单的事情 ...

  4. 巨蟒python全栈开发flask10 项目开始2

    1.websocket异常处理 出现上图报错的原因是什么? 原因是:websocket断开了,所以报错 19行接收的msg是None值,所以报错. 打开一个文件,点击发送音乐,出现上面的内容: 客户端 ...

  5. Logstash之时区问题的建议和修改---filter---and duplicate resolution.

    2. logstash es duplicate https://logstash.jira.com/browse/LOGSTASH-1875 https://logstash.jira.com/br ...

  6. append和innerHTML的区别以及使用方法

    1.append jquery中的append的使用方式:$("#id").append("<a href='#'>test</a>") ...

  7. A Magic Lamp---hdu3183(链表删除| RMQ)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 给你一个长度<1000的数a,和m<len(a); 让把数a删除m个数字之后剩下的数 ...

  8. Again Array Queries---Lightoj1100(循环暴力)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1100 题意是给你n个数,q个询问,每次求出 a 到 b(从0开始)最小差值: 直接暴力 ...

  9. 关闭在chrome里使用双指前进后退页面的功能

    defaults write com.google.Chrome AppleEnableSwipeNavigateWithScrolls -bool FALSE

  10. CListCtrl控件使用方法总结

    今天第一次用CListCtrl控件,遇到不少问题,查了许多资料,现将用到的一些东西总结如下: 以下未经说明,listctrl默认view 风格为report 相关类及处理函数 MFC:CListCtr ...