第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
/** Spark SQL源码分析系列文章*/
前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。
那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式。
一、引子
当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用。
即parse后,会形成InMemoryRelation结点,最后执行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。
如下:
- scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
- exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =
- == Parsed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Analyzed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Optimized Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- == Physical Plan ==
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) //查询内存中表的入口
- Code Generation: false
- == RDD ==
二、InMemoryColumnarTableScan
- private[sql] case class InMemoryColumnarTableScan(
- attributes: Seq[Attribute],
- relation: InMemoryRelation)
- extends LeafNode {
- override def output: Seq[Attribute] = attributes
- override def execute() = {
- relation.cachedColumnBuffers.mapPartitions { iterator =>
- // Find the ordinals of the requested columns. If none are requested, use the first.
- val requestedColumns = if (attributes.isEmpty) {
- Seq(0)
- } else {
- attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //根据表达式exprId找出对应列的ByteBuffer的索引
- }
- iterator
- .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//根据索引取得对应请求列的ByteBuffer,并封装为ColumnAccessor。
- .flatMap { columnAccessors =>
- val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) {
- columnAccessors(i).extractTo(nextRow, i) //根据对应index和长度,从byterbuffer里取得值,封装到row里
- i += 1
- }
- nextRow
- }
- override def hasNext = columnAccessors.head.hasNext
- }
- }
- }
- }
- }
查询请求的列,如下:
- scala> exe.optimizedPlan
- res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val relation = exe.optimizedPlan(1)
- relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
- scala> val request_relation = exe.executedPlan
- request_relation: org.apache.spark.sql.execution.SparkPlan =
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None))
- scala> request_relation.output //请求的列,我们请求的只有value列
- res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- scala> relation.output //默认保存在relation中的所有列
- res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5)
- scala> val attributes = request_relation.output
- attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
- //根据exprId找出对应ID
- scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
- attr_index: Seq[Int] = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据
- scala> relation.output.foreach(e=>println(e.exprId))
- ExprId(4) //对应<span style="font-family: Arial, Helvetica, sans-serif;">[key#4,value#5]</span>
- ExprId(5)
- scala> request_relation.output.foreach(e=>println(e.exprId))
- ExprId(5)
三、ColumnAccessor
ColumnAccessor对应每一种类型,类图如下:
最后返回一个新的迭代器:
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) { //请求列的长度
- columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer
- i += 1
- }
- nextRow//返回解析后的row
- }
- override def hasNext = columnAccessors.head.hasNext
- }
四、总结
Spark SQL In-Memory Columnar Storage的查询相对来说还是比较简单的,其查询思想主要和存储的数据结构有关。
即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
查询时,根据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。
——EOF——
创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/39577419
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

转自:http://blog.csdn.net/oopsoom/article/details/39577419
第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query的更多相关文章
- 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...
- Spark学习之路(十)—— Spark SQL 外部数据源
一.简介 1.1 多数据源支持 Spark支持以下六个核心数据源,同时Spark社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JDBC/ ...
- Spark 系列(十)—— Spark SQL 外部数据源
一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...
- Tachyon在Spark中的作用(Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks 论文阅读翻译)
摘要: Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者 ...
- 【Spark SQL 源码分析系列文章】
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...
- Spark SQL 源代码分析系列
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...
- 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界
用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...) 用户行为轨迹.流量日志 日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...
- Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...
- Spark SQL with Hive
前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 ...
随机推荐
- Storm-源码分析-LocalState (backtype.storm.utils)
LocalState A simple, durable, atomic K/V database. *Very inefficient*, should only be used for occas ...
- ssh无密码登录设置
为啥要设置ssh无密码登录? 我们先来看一下分布式系统的一键启动流程, 在matser机器上运行脚本,脚本检测有多少slavers,然后通过ssh登录到slavers,进入到相同的目录(或者通过$XX ...
- U盘安装CentOS7笔记
准备工具: 8G左右U盘; 最新版UltraISO; CentOS7光盘镜像; CentOS7的镜像文件可以在网易的开源镜像站或者阿里云的开源镜像站下载,地址分别是:http://mirrors.16 ...
- visual studio 2015开发nodejs教程1搭建环境
http://sailsdoc.swift.ren/ 这里有 sails中文文档 1 安装nodejsv6.10.3 下载地址 https://nodejs.org/dist/v6.10.3/nod ...
- 《闪存问题之READ DISTURB》总结
来自 http://www.ssdfans.com/?p=1778 闪存存在几个问题,影响着数据可靠性: 1.擦除次数,闪存擦除次数增多,会使隔离栅极的电化学键变弱. 2.data retention ...
- 子集和问题(应用--换零钱)POJ2229:Sumsets
我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...
- C语言可以分配的最大内存
前言 最近用C刷PAT算法题目, 发现C语言有太多需要关注大小范围的东西必须 知道, 虽说挺麻烦, 但也挺有意思. int最大值是多少 首先就是int类型的取值范围, 这个太常用. C语言标准规定最低 ...
- PAT 1049 Counting Ones [难]
1049 Counting Ones (30 分) The task is simple: given any positive integer N, you are supposed to coun ...
- PAT 1151 LCA in a Binary Tree[难][二叉树]
1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...
- #if defined(__cplusplus)
由于C++编译器需要支持函数的重载,会改变函数的名称,因此dll的导出函数通常是标准C定义的.这就使得C和C++的互相调用变得很常见.但是有时可能又会直接用C来调用,不想重新写代码,让标准C编写的dl ...