【BJOI2014】大融合【LCT】
闲着没事写篇题解
LCT维护子树的模板题
树链剖分中,子树可以用dfs序维护。但LCT你总不可能动态维护dfs序啊
LCT之所以不能直接维护子树,是因为LCT只能维护它的重儿子。我们把这棵子树称为重子树。
对于其他子树,我们称为轻子树。轻子树只会储存父节点,要不试试在跑fa的时候顺便维护轻子树?
以此题为例,设s[i]为整棵子树的大小,si[i]为虚子树大小
这里的虚子树指所有虚边连向它的儿子的大小(即s)的和
不难看出,我们询问x,y时

实际上是求(si[x]+1)(si[y]+1)
如何维护s和si?
我们发现,只有当改变了树的形态的时候,才会对s和si产生影响
access:会改变。直接在接头的时候顺便改一下
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
si[x]+=s[ch[x][1]];
si[x]-=s[ch[x][1]=y];
pushup(x);
}
}
makeroot:虽然改了,其实只是改了下顺序,access和splay里面会改
split:没有,下一个
link和cut:link把父亲的si加一下,cut把父亲的s和si都减一下
(实际上就是直接调用了fa或ch的函数)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 100005
using namespace std;
namespace Splay
{
int ch[MAXN][2],fa[MAXN];
int rv[MAXN];
int si[MAXN],s[MAXN];
void pushup(int x)
{
s[x]=s[ch[x][0]]+s[ch[x][1]]+si[x]+1;
}
void pushr(int x)
{
swap(ch[x][0],ch[x][1]);
rv[x]^=1;
}
void pushdown(int x)
{
if (rv[x])
{
if (ch[x][0]) pushr(ch[x][0]);
if (ch[x][1]) pushr(ch[x][1]);
rv[x]=0;
}
}
bool isroot(int x)
{
return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;
}
bool get(int x)
{
return ch[fa[x]][1]==x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int l=get(x),r=l^1;
int w=ch[x][r];
if (!isroot(y))
ch[z][get(y)]=x;
ch[x][r]=y;
ch[y][l]=w;
if (w)
fa[w]=y;
fa[y]=x;
fa[x]=z;
pushup(y);
pushup(x);
}
int q[MAXN],top;
void splay(int x)
{
q[top=1]=x;
for (int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
for (int i=top;i>=1;i--)
pushdown(q[i]);
while (!isroot(x))
{
int y=fa[x];
if (!isroot(y))
{
if (get(x)==get(y))
rotate(y);
else
rotate(x);
}
rotate(x);
}
pushup(x);
}
}
using namespace Splay;
namespace LCT
{
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
si[x]+=s[ch[x][1]];
si[x]-=s[ch[x][1]=y];
pushup(x);
}
}
void evert(int x)
{
access(x);
splay(x);
pushr(x);
}
void split(int x,int y)
{
evert(x);
access(y);
splay(y);
}
void link(int x,int y)
{
split(x,y);
si[fa[x]=y]+=s[x];
pushup(y);
}
}
using namespace LCT;
inline int read()
{
int ans=0;
char c=getchar();
while (!isdigit(c))
c=getchar();
while (isdigit(c))
ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline char getalpha()
{
char c=getchar();
while (!isalpha(c))
c=getchar();
return c;
}
int main()
{
int n,q;
n=read(),q=read();
for (int i=1;i<=n;i++)
s[i]=1;
while (q--)
{
char c=getalpha();
int x,y;
x=read(),y=read();
if (c=='A')
link(x,y);
else
{
split(x,y);
printf("%I64d\n",(long long)(si[x]+1)*(si[y]+1));
}
}
return 0;
}
【BJOI2014】大融合【LCT】的更多相关文章
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- Luogu4219 BJOI2014 大融合 LCT
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...
- BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...
- BZOJ.4530.[BJOI2014]大融合(LCT)
题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...
- [BJOI2014]大融合(LCT)
题面 luogu bzoj是权限题.. 题解 \(LCT\)维护子树信息 因为\(LCT\)中有一些虚子树,\(splay\)维护不了. 所以要新开一个数组来记录 然后注意\(link\)时 是先\( ...
- 【洛谷 P4219】 [BJOI2014]大融合(LCT)
题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define ...
- bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
- P4219 [BJOI2014]大融合 LCT维护子树大小
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...
随机推荐
- 微信小程序开发(一)准备开发环境
1.成为微信公众平台开发者 成为微信公众平台的开发者,是小程序开发的首要条件.只有成为微信公众平台的开发者,才可以使用公众平台的各种开发接口.如果你已经是开发者,则可以跳过本章. (1)进入微信公众平 ...
- 【洛谷 P4134】 [BJOI2012]连连看(费用流)
题目链接 首先是可以\(O(n^2)\)枚举出所有符合要求的点对的,然后考虑建图. 还是拆点把每个点拆成入点和出点,源点连入点,出点连汇点,流量都是1,费用都是0. 然后对于没对符合要求的\((x,y ...
- 【leetcode 简单】第三题 回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- VScode格式化ESlint
打开 文件-首选项- 设置 mac可以按快捷键(command和,) 然后在右上角的省略号选择open setting json { // vscode默认启用了根据文件类型自动设置tabsize的选 ...
- think php模板的使用
{include file="../application/public/header.html"}<!-- Jumbotron --><div class=&q ...
- Elasticsearch5.0 安装问题集锦【转】
转自 Elasticsearch5.0 安装问题集锦 - 代码&优雅着&生活 - 博客园http://www.cnblogs.com/sloveling/p/elasticsearch ...
- UVA题解二
UVA题解二 UVA 110 题目描述:输出一个Pascal程序,该程序能读入不多于\(8\)个数,并输出从小到大排好序后的数.注意:该程序只能用读入语句,输出语句,if语句. solution 模仿 ...
- PostGIS 操作geometry方法
WKT定义几何对象格式: POINT(0 0) ——点 LINESTRING(0 0,1 1,1 2) ——线 POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2 ...
- Hadoop(八)Hadoop数据压缩与企业级优化
一 Hadoop数据压缩 1.1 概述 压缩技术能够有效减少底层存储系统(HDFS)读写字节数.压缩提高了网络带宽和磁盘空间的效率.在Hadood下,尤其是数据规模很大和工作负载密集的情况下,使用数据 ...
- 借助Visual Studio Code提高基于ActionScript的LayaAir HTML5游戏的调试效率
借助Visual Studio Code提高基于ActionScript的LayaAir HTML5游戏的调试效率 使用Visual Studio Code(VS Code)调试的优势 借助VS Co ...