【转载】python-协程
转载自:廖雪峰的官方网站
协程,又称微线程,纤程。英文名Coroutine。
协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。
所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。
子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:
def A():
print ''
print ''
print '' def B():
print 'x'
print 'y'
print 'z'
假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:
1
2
x
y
3
z
但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。
看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
Python对协程的支持还非常有限,用在generator中的yield可以一定程度上实现协程。虽然支持不完全,但已经可以发挥相当大的威力了。
来看例子:
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:
import time def consumer():
r = ''
while True:
n = yield r
if not n:
return
print('[CONSUMER] Consuming %s...' % n)
time.sleep(1)
r = '200 OK' def produce(c):
c.next()
n = 0
while n < 5:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close() if __name__=='__main__':
c = consumer()
produce(c)
执行结果:
[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK
注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:
首先调用c.next()启动生成器;
然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
consumer通过yield拿到消息,处理,又通过yield把结果传回;
produce拿到consumer处理的结果,继续生产下一条消息;
produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
最后套用Donald Knuth的一句话总结协程的特点:
“子程序就是协程的一种特例。”
Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。
gevent是第三方库,通过greenlet实现协程,其基本思想是:
当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。
由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:
from gevent import monkey; monkey.patch_socket()
import gevent def f(n):
for i in range(n):
print gevent.getcurrent(), i g1 = gevent.spawn(f, 5)
g2 = gevent.spawn(f, 5)
g3 = gevent.spawn(f, 5)
g1.join()
g2.join()
g3.join()
运行结果:
<Greenlet at 0x10e49f550: f(5)> 0
<Greenlet at 0x10e49f550: f(5)> 1
<Greenlet at 0x10e49f550: f(5)> 2
<Greenlet at 0x10e49f550: f(5)> 3
<Greenlet at 0x10e49f550: f(5)> 4
<Greenlet at 0x10e49f910: f(5)> 0
<Greenlet at 0x10e49f910: f(5)> 1
<Greenlet at 0x10e49f910: f(5)> 2
<Greenlet at 0x10e49f910: f(5)> 3
<Greenlet at 0x10e49f910: f(5)> 4
<Greenlet at 0x10e49f4b0: f(5)> 0
<Greenlet at 0x10e49f4b0: f(5)> 1
<Greenlet at 0x10e49f4b0: f(5)> 2
<Greenlet at 0x10e49f4b0: f(5)> 3
<Greenlet at 0x10e49f4b0: f(5)> 4
可以看到,3个greenlet是依次运行而不是交替运行。
要让greenlet交替运行,可以通过gevent.sleep()交出控制权:
def f(n):
for i in range(n):
print gevent.getcurrent(), i
gevent.sleep(0)
执行结果:
<Greenlet at 0x10cd58550: f(5)> 0
<Greenlet at 0x10cd58910: f(5)> 0
<Greenlet at 0x10cd584b0: f(5)> 0
<Greenlet at 0x10cd58550: f(5)> 1
<Greenlet at 0x10cd584b0: f(5)> 1
<Greenlet at 0x10cd58910: f(5)> 1
<Greenlet at 0x10cd58550: f(5)> 2
<Greenlet at 0x10cd58910: f(5)> 2
<Greenlet at 0x10cd584b0: f(5)> 2
<Greenlet at 0x10cd58550: f(5)> 3
<Greenlet at 0x10cd584b0: f(5)> 3
<Greenlet at 0x10cd58910: f(5)> 3
<Greenlet at 0x10cd58550: f(5)> 4
<Greenlet at 0x10cd58910: f(5)> 4
<Greenlet at 0x10cd584b0: f(5)> 4
3个greenlet交替运行,
把循环次数改为500000,让它们的运行时间长一点,然后在操作系统的进程管理器中看,线程数只有1个。
当然,实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:
from gevent import monkey; monkey.patch_all()
import gevent
import urllib2 def f(url):
print('GET: %s' % url)
resp = urllib2.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url)) gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])
运行结果:
GET: https://www.python.org/
GET: https://www.yahoo.com/
GET: https://github.com/
45661 bytes received from https://www.python.org/.
14823 bytes received from https://github.com/.
304034 bytes received from https://www.yahoo.com/.
从结果看,3个网络操作是并发执行的,而且结束顺序不同,但只有一个线程。
小结
使用gevent,可以获得极高的并发性能,但gevent只能在Unix/Linux下运行,在Windows下不保证正常安装和运行。
【转载】python-协程的更多相关文章
- [转载] Python协程从零开始到放弃
Python协程从零开始到放弃 Web安全 作者:美丽联合安全MLSRC 2017-10-09 3,973 Author: lightless@Meili-inc Date: 2017100 ...
- day-5 python协程与I/O编程深入浅出
基于python编程语言环境,重新学习了一遍操作系统IO编程基本知识,同时也学习了什么是协程,通过实际编程,了解进程+协程的优势. 一.python协程编程实现 1. 什么是协程(以下内容来自维基百 ...
- Python 协程总结
Python 协程总结 理解 协程,又称为微线程,看上去像是子程序,但是它和子程序又不太一样,它在执行的过程中,可以在中断当前的子程序后去执行别的子程序,再返回来执行之前的子程序,但是它的相关信息还是 ...
- 终结python协程----从yield到actor模型的实现
把应用程序的代码分为多个代码块,正常情况代码自上而下顺序执行.如果代码块A运行过程中,能够切换执行代码块B,又能够从代码块B再切换回去继续执行代码块A,这就实现了协程 我们知道线程的调度(线程上下文切 ...
- 从yield 到yield from再到python协程
yield 关键字 def fib(): a, b = 0, 1 while 1: yield b a, b = b, a+b yield 是在:PEP 255 -- Simple Generator ...
- 关于python协程中aiorwlock 使用问题
最近工作中多个项目都开始用asyncio aiohttp aiomysql aioredis ,其实也是更好的用python的协程,但是使用的过程中也是遇到了很多问题,最近遇到的就是 关于aiorwl ...
- 用yield实现python协程
刚刚介绍了pythonyield关键字,趁热打铁,现在来了解一下yield实现协程. 引用官方的说法: 与线程相比,协程更轻量.一个python线程大概占用8M内存,而一个协程只占用1KB不到内存.协 ...
- 00.用 yield 实现 Python 协程
来源:Python与数据分析 链接: https://mp.weixin.qq.com/s/GrU6C-x4K0WBNPYNJBCrMw 什么是协程 引用官方的说法: 协程是一种用户态的轻量级线程,协 ...
- python协程详解
目录 python协程详解 一.什么是协程 二.了解协程的过程 1.yield工作原理 2.预激协程的装饰器 3.终止协程和异常处理 4.让协程返回值 5.yield from的使用 6.yield ...
- Python协程与Go协程的区别二
写在前面 世界是复杂的,每一种思想都是为了解决某些现实问题而简化成的模型,想解决就得先面对,面对就需要选择角度,角度决定了模型的质量, 喜欢此UP主汤质看本质的哲学科普,其中简洁又不失细节的介绍了人类 ...
随机推荐
- 【BZOJ5319】军训列队(主席树)
[BZOJ5319]军训列队(主席树) 题面 BZOJ 洛谷 题解 一眼题既视感... 首先很明显,每次询问的结果显然是做一次离散. 然后直接上主席树就好了... 查询答案的方式也很简单 考虑一下那个 ...
- 洛谷 P2056 [ZJOI2007]捉迷藏 解题报告
P2056 [ZJOI2007]捉迷藏 题目描述 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由\ ...
- hadoop(五)HDFS原理剖析
一.HDFS的工作机制 工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能 力,形成一定的集群运维能力PS:很多不是真正理解 hadoop 工作原理的人会常常觉得 HDF ...
- 【SQL优化】MySQL官网中可优化的层次结构
正如上一篇中我翻译的那篇文章,关于MySQL数据库优化的宏观介绍,了解到了从大体上来讲,优化MySQL可以从3个角度来讲.那么这一篇文章,则从一个个优化点出发,统计出究竟有多少个地方我们可以来优化My ...
- Oracle中rank() over, dense_rank(), row_number() 的区别
摘自:http://www.linuxidc.com/Linux/2015-04/116349.htm Oracle 中 rank() over, dense_rank(), row_number() ...
- poj 3254 状态压缩
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15285 Accepted: 8033 Desc ...
- python安装包下载
加入python官网一次按照下图点击: 这个exe文件就下好了,然后再安装一下即可.
- springMVC参数的获取区别
在springMVC中我们一般使用注解的形式来完成web项目,但是如果不明白springmvc的对于不同注解的应用场景就会很容易犯错误 1.什么是restful形式: 什么是RESTful restf ...
- c++构造是否要加大括号
笔者被这个问题困扰良久,终于下决心看个究竟.废话不多说,先上结论: 如果对象是原生类型,加大括号会保证生成对象被初始化(一般是0) 如果对象非原生类型,加大括号或者不加,效果是一样的,都会执行该类的默 ...
- 堡垒机初识--paramiko模块
一.paramiko模块 Python的paramiko模块基于SSH用于连接远程服务器并执行相关的操作. 1.1 在windows上安装paramiko模块 测试环境: win10 , python ...